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Combining machine-learning topic models and spatiotemporal analysis of social
media data for disaster footprint and damage assessment
Bernd Resch a,b, Florian Usländer a and Clemens Havas a

aDepartment of Geoinformatics – Z_GIS, University of Salzburg, Austria; bCenter for Geographic Analysis, Harvard University, Cambridge,
MA, USA

ABSTRACT
Current disaster management procedures to cope with human and economic losses and to manage
a disaster’s aftermath suffer from a number of shortcomings like high temporal lags or limited
temporal and spatial resolution. This paper presents an approach to analyze social media posts to
assess the footprint of and the damage caused by natural disasters through combining machine-
learning techniques (Latent Dirichlet Allocation) for semantic information extraction with spatial
and temporal analysis (local spatial autocorrelation) for hot spot detection. Our results demonstrate
that earthquake footprints can be reliably and accurately identified in our use case. More, a number
of relevant semantic topics can be automatically identified without a priori knowledge, revealing
clearly differing temporal and spatial signatures. Furthermore, we are able to generate a damage
map that indicates where significant losses have occurred. The validation of our results using
statistical measures, complemented by the official earthquake footprint by US Geological Survey
and the results of the HAZUS loss model, shows that our approach produces valid and reliable
outputs. Thus, our approach may improve current disaster management procedures through
generating a new and unseen information layer in near real time.
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Introduction

Natural disasters like earthquakes, floods, tsunamis, or
hurricanes can cause severe property damage and harm
personal life. Current procedures in disaster manage-
ment, particularly in the immediate response phase,
which focuses on dealing with human and economic
losses and to mitigate a disaster’s aftermath, are char-
acterized by a variety of deficiencies. Among others,
remote-sensing-based methods face the central disad-
vantage (aside from all well-known advantages) of
temporal lags of approximately 48–72 h before infor-
mation layers can be produced, which are relevant to
disaster management. Furthermore, remotely sensed
data are limited in terms of their spatial, spectral, and
temporal resolution; their usability (e.g. through cloud
cover); and their cost-efficient availability. More, lack-
ing pre-disaster imagery oftentimes prevents successful
and accurate change detection (Panagiota, Jocelyn, &
Erwan, 2011).

A number of recent research efforts have shown that
nontraditional data sources like social media networks
and other crowdsourcing platforms can significantly
improve disaster management (Boulos et al., 2011;
Roche, Propeck-Zimmermann, & Mericskay, 2013).

The advantages of these new approaches are rooted in
the real-time nature of the data (inputs are available
without significant temporal delays), and their in-situ
character (information can be gained about the local
situation like accessibility of streets and obstructed
routes, the location of injured persons, the degree of
damage of buildings, log jams in rivers, etc.). Like this,
a large amount of messages from social media plat-
forms or dedicated smartphone apps is created that can
be regarded as real-time in-situ sensor data (Resch,
2013), which supports the assessment of a post-disaster
situation through the provision of an additional, up-to-
date information layer that can be produced in con-
siderably less time compared to remote-sensing-based
approaches (approx. 1–3 h). Naturally, these
approaches require a functioning wireless network
(mobile phone networks, WiFi networks, etc.), which
is usually given even after major disasters, partly with
some restrictions (Bengtsson, Xin, Thorson, Garfield,
& Johan, 2011).

This paper proposes a new approach to analyze
social media posts to assess the footprint of and the
damage caused by natural disasters through combining
semantic machine-learning techniques with spatial and
temporal analysis. This goes clearly beyond previous
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research that mostly pursued keyword-based
approaches (Herfort, Schelhorn, de Albuquerque, &
Zipf, 2014), neglected the spatial dimension (Cresci,
Cimino, Dell’Orletta, & Tesconi, 2015), or purely
focused on geographic analysis of manually classified
social media posts (de Albuquerque, Herfort, Brenning,
& Zipf, 2015). In our specific case study, we use Tweets
to analyze the characteristics of the earthquake in Napa
(CA, USA) in 2014. Yet, the approach is transferable to
other data sources (Flickr, Instagram, blogs, short mes-
saging services, etc.) and other geographic areas, even
though cultural differences in social media usage need
to be considered. It shall be noted that our research
focuses on post-disaster analysis (social media posts are
analyzed after a natural disaster has occurred), but it
can also be applied in the fields of event detection or
early warning, depending on the characteristics of the
disaster.

Our approach is divided into two main parts. First,
the textual content of social media posts is analyzed
using an unsupervised, self-learning topic modeling
approach, Latent Dirichlet Allocation (LDA) (Blei,
Ng, & Jordan, 2003). Like this, latent topics are
extracted from the text corpus without the necessity
for a priori knowledge about the disaster event, which
is required with most previous approaches, particularly
keyword-based ones. Thus, our approach aims to find
the relevant “set of words” to be used for the analysis.
The extracted topics can then be interpreted with
respect to their relevance to a natural disaster. A cas-
cading procedure identifies Tweets which are related to
a disaster and then extracts a damage subtopic. After
this semantic analysis, we identify spatial hot spots and
temporal anomalies in the dataset. In other words, our
method discovers similarities in space, time and
semantics in a combined fashion, which goes beyond
traditional approaches of social media analysis as
explained above (see the “Introduction” and “Related
Work” sections). From this information, we can infer
disaster footprints and assess the damage caused by the
disaster. The results of our analysis are validated
through comparison with official earthquake and
damage maps, following technical guide provided by
the Federal Emergency Management Agency (FEMA)
(Kircher, Whitman, & Holmes, 2006).

Related work

The central challenge in detecting events in online
systems in near real time is that no prior knowledge
about an event and no previously collected data are
analyzed, but data that arrive as continuous streams.
The general goal typically is to detect new events with

low latency [the event needs to be identified shortly
after it happened (Middleton, Middleton, &
Modafferi, 2014)]. Robinson, Power, and Cameron
(2013) developed a burst detector for earthquakes in
Australia and New Zealand. An assumption of the
authors is that if a new event happens, the frequency
about event-related topics increases and can therefore
be detected. Thus, they analyzed the real-time Twitter
stream and used the keywords “earthquake” and
“#eqnz” to identify user-related messages to a new
earthquake. They limited their research on New
Zealand and Australia and on earthquakes and used
a keyword-based approach which has clear limits in
expanding to other events or languages or collecting
all available information. Spielhofer, Greenlaw,
Markham, and Hahne (2016) present another method
for analyzing social media streams. While their noise
reduction algorithm is highly valuable, it is only the
basis for further (geospatial) analysis, which we aim to
cover in our research.

Kongthon, Haruechaiyasak, Pailai, and
Kongyoung (2012) examine how people react to a
crisis event like the Thailand floods in 2011 on
social media by analyzing the textual content of
Twitter posts. The aim of their work is to identify
user-generated messages that are related to the
flood event and to categorize these messages into
five classes: situational announcements and alerts,
support announcements, requests for assistance,
requests for information, and other. For the text
analysis, all Tweets with the hashtag #thaiflood are
preselected and afterward categorized by a rule-
based classification approach based on keywords.
Imran, Castillo, Lucas, Meier, and Vieweg (2014)
present a more sophisticated approach called
Artificial Intelligence for Disaster Response, which
uses a learning system to classify tweets. Yet, no
geospatial analysis is performed, but the system
purely focuses on text analysis.

Herfort et al. (2014) compare the spatial and temporal
distribution of Twitter data related to flood phenomena
with the footprint of the Elbe flood event (Germany) in
June 2013. Like de Albuquerque et al. (2015), they use
keyword-based filtering and portray the results on a map.
Similarly, Guan and Chen (2014) categorize Twitter mes-
sages into “disaster-related” and “not disaster-related”
through selecting predefined keywords and hashtags.
Terpstra, de Vries, Stronkman, and Paradies (2012) also
apply a keyword-based approach to detect damage and
casualties reports from Twitter data during a storm at the
Pukkelpop Festival in the year 2011.

One example, where LDA is applied to Tweets in
the context of a natural disaster, is a study by
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Kireyev, Palen, and Anderson (2009) where the
algorithm is leveraged for the extraction of disas-
ter-related Tweets. Their focus is on improving the
LDA algorithm itself by using a term weighting
function, therefore addressing the reduced informa-
tion content as a consequence of the shortness of
the single Tweets. Topics covering single events like
an earthquake or a tsunami are successfully
extracted, but no geospatial analysis is applied.
Similarly, Sakaki, Okazaki, and Matsuo (2010)
were able to detect crisis-related Twitter messages
using a support vector machine and Kalman filter-
ing. Yet, the geospatial nature of the results is cri-
tical to supporting an operational picture (Starr
Roxanne Hiltz, Kushma, & Plotnick, 2014).

The approaches discussed in this section show two
central shortcomings. First, most of them use keyword-
based approaches (some authors actually suggest the use
of machine-learning techniques for text analysis to
improve the classification results). Second, the spatial
information contained in the Tweets is not always con-
sidered, which is an essential drawback for first respon-
ders (Spence, Lachlan, & Rainear, 2016). In fact, many
approaches only investigate one of the three dimensions
(spatial, temporal, and semantic).

Method: spatial, temporal, and semantic
analysis

The approach presented in this paper is illustrated in
Figure 1. After preprocessing the raw Tweets, a topic
modeling technique (LDA) is applied in a cascading
fashion, i.e. we apply LDA to the results of the first
iteration in a second iteration, to extract “earthquake”-

and “damage”-related Tweets. Then, the generated topics
are validated through statistical accuracy assessment,
before spatial hot spot analysis is applied to investigate
local spatial autocorrelation. This results in footprint
maps for the earthquake itself and the damage it caused,
which are finally validated using official earthquake infor-
mation. The single steps of this workflow are described in
more detail in the following subsections.

Data and study area

Our study uses Twitter data around the Napa (CA, USA)
earthquake on 24August 2014, geographically covering the
larger Bay Area. Table 1 summarizes the characteristics of
the dataset. The study area comprises not only several
metropolitan areas (San Francisco, Oakland, San Jose,
amongst others), but also a wide variety of comparatively
rural, sparsely populated areas around the epicenter of the
earthquake.

Figure 2 shows the spatial distribution (determined
through Kernel Density Estimation with a bandwidth of
5 km and an output cell size of 100 m) of Tweets on two
different days: left, 1 week before the earthquake, and right,
on the day of the earthquake. It can be clearly observed that
the number of Tweets heavily increased on the day of the
disaster. However, this spatial density clustering method,
which has been widely used in previous approaches, shows
that Tweets strongly accumulate in urban areas, making it
impossible to draw conclusions on the location of the
earthquake and on potential damage.

Figures 3 and 4 show the number of Tweets posted per
hour and per minute, respectively. It can be seen that a
distinct peak in the overall Tweets per hour can be
observed on the day of the earthquake, whereas the

Figure 1. Overall workflow.

Table 1. Characteristics of the dataset.
Data description summary

Geographic bounding box (WGS84) −123.05°, 37.19°, −121.04°, 38.99°
Time period (UTC) 16 August 2014–31 August 2014
Number of georeferenced Tweets 1,012,650
Date of the earthquake event 24 August 2014
Number of Tweets on the event day 94,485
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minute-wise illustration shows an even stronger anomaly,
particularly because the earthquake happened at night
(3:20 a.m.), where the number of posted Tweets is gen-
erally low.

Data preprocessing

Before performing the actual semantic analysis on the
Tweets, the dataset needs to be preprocessed to reduce
potential statistical “noise,” which is inherently present

Figure 3. Number of Tweets per hour around the day of the earthquake (PDT).

Figure 2. Spatial distribution of Tweets 7 days before the earthquake (left) and on the day of the earthquake (right). © OpenStreetMap
(and) contributors; available under CC-BY-SA Licence.

Figure 4. Number of Tweets per minute during the night of the earthquake (PDT).
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in social media posts (Steiger, Resch, & Zipf, 2015).
The following paragraphs summarize the preprocessing
steps. It shall be noted that the sequence of the pre-
processing steps is obviously critical to achieve max-
imum reliability of the results.

Tokenization
This step splits Tweet text at each blank character to
create a list of single tokens (stand-alone words, num-
bers, signs, or a concatenated string like a URL). This
processing step allows for grasping the single tokens in
further processing steps to filter, for instance, single
words or symbols.

Tokens to Lowercase
This step is required to make the tokens more similar
and to reduce sensitivity to typos, preventing that words
with identical spelling, but differing cases would be
treated as two semantically separate tokens (Ortigosa,
Martiin, & Carro, 2014). One problem that arises from
converting all characters to lowercase is that words,
which differ in their semantic meaning, cannot be dif-
ferentiated any more. However, this is not a central issue
in the English language except for specific expressions
like geographical location names, personal, company
and brand names, or academic titles.

Removing URLs
URLs are not be considered in our topic modeling
approach because they contain unspecific and hardly
interpretable semantic information (Pak & Paroubek,
2010). Thus, they are regarded as noise in the data and
are removed from the Tweet text.

Removing Numbers
Numbers are not considered in the text corpus because
they do generally not contain semantically viable infor-
mation for our purposes, but they would bias the out-
comes of the topic modeling process. One exception
may be the magnitude description for the earthquake.
Yet, the word “magnitude” will indicate such a descrip-
tion and is represented in the topic model.

Removing Special Characters
Special characters are removed to preserve the focus on
words in the dataset. The underlying assumption of
this decision is that emoticons are frequently used in
Tweets to express emotions in messages (Resch,
Summa, Zeile, & Strube, 2016), but they are not stan-
dardized and thus hard to interpret. Yet, extracting
emotion information from Tweets may increase inter-
pretability of the results (Resch, Summa, Sagl, Zeile, &

Exner, 2015; Zhao, Dong, Junjie, & Ke, 2012), but this
is out of the scope of this research.

Synonym Handling
In the context of the Napa earthquake, several different
expressions have been used to describe or talk about
the earthquake. Thus, synonyms need to be handled to
achieve realistic weighting (frequency) for the term
“earthquake.” Otherwise, different words, which are
frequently co-occurring not only with the term “earth-
quake” but also with different synonyms like e.g.
“quake,” will create new, separate topics that are not
combinable after the analysis. In our research, we
manually created a list of synonyms (e.g. earthquake,
quake, eq, shake). Synonym handling is critical to suc-
cessful topic modeling and is thus separately discussed
in the “Discussion” section.

Removing Short Words
Short words with three characters or less are removed
from the text corpus because common agreements in
the literature state that such words contain little
semantic meaning (Pak & Paroubek, 2010).

Removing Stop Words
“Stop words” are commonly used words which do not
carry distinct semantical meaning (e.g. auxiliary verbs,
conjunctions and articles). These terms appear in
almost every document and would form a topic on
their own because they co-occur frequently with all
other words (Ikonomakis, Kotsiantis, & Tampakas,
2005). Thus, we remove stop words using the prede-
fined list from the NLTK Toolkit. Additionally, we
manually identified additional stop words, which are
specific to unedited text like Tweets, including “ain’t,”
“gonna,” “wanna,” among others.

Removing Unique Words
Words, which only appear once in the text corpus, are
removed because they will not contribute significantly
to a topic but in turn drastically decrease the algo-
rithm’s performance.

Stemming
We used a Porter stemmer that reduces single words to
their root, resulting in a condensation of the text cor-
pus by combining different forms of a word, which in
turn increases significance of the topic–word
associations.

Vectorization and Market Matrix
The preprocessed data have to be transformed into a
vector format for further calculation steps because
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LDA expects a document-word-count matrix and a
word dictionary. From these two representations, a
corpus is built in a “bag-of-words” format, i.e. a collec-
tion of words without information on word order or
grammar.

Machine-learning for Extracting Semantic
Information from Tweets: Topic Modeling with
Cascading LDA

To extract topics from our Twitter dataset, we use the
LDA model (Blei et al., 2003), as shown in Figure 5.
LDA assumes that each document d of a set of docu-
ments D contains one or more topics z, which is again
defined by a probability distribution of single words w,
the only observed variable in the model. Therefore, the
latent variable ϕ represents a multinomial distribution
of words within a topic. The other latent variable θ
constitutes a multinomial distribution of topics in a
document. α and β are two concentration parameters
– α represents prior knowledge about the distribution
of topics in a document, whereas β contains prior
knowledge about the distribution of words in a topic.
A higher value of α leads to a more smoothed distribu-
tion of topics over document, whereas a lower value,
especially lower than zero, leads to a higher concentra-
tion of topics. ϕ, θ, and z are latent and therefore
unobserved variables, which are generated when the
process is running (Griffiths & Steyvers, 2004).

To achieve most reliable results, we test and com-
pare different parameter combinations (number of
passes, alpha, number of topics, beta, etc.), and the
topics are then manually interpreted with regard to
their semantic meaning (see the “Discussion” section
for a critical review of this procedure). Steyvers and

Griffiths (2006) propose an α value of 50/T, but the
best working value in our case seems to be an α value
of 0.0001. This is reasonable because of the nature of
our Twitter dataset, in which each Tweet expectedly
only comprises one topic due to the shortness of the
text (with up to 140 characters). Therefore, the prob-
ability distribution is more concentrated when α ≪ 1.

In our study, a 1000 passes deliver the best results –
a higher number does not improve the learning effect
any more but decreases performance. The number of
topics strongly influences the topic–word distributions
in terms of the granularity of the topics. Therefore, a
lower number of topics leads to larger topics (contain-
ing more words), whereas a higher number of topics
leads to smaller topics (containing fewer words).
Effectively, this is a trade-off between minimal infor-
mation loss through high granularity, and the genera-
tion of distinct and meaningful topics. In our case, the
optimal number of topics turned out to be 25, as stated
in the “Results and Validation” section.

LDA generates a document–topic matrix that con-
tains the topics with corresponding probabilities for
each document. This means that one Tweet comprises
one or more topics. In a next step, the latent topics
have to be semantically interpreted to identify disaster-
related or damage-related Tweets.

One issue in the course of our research was the
extraction of damage-related Tweets because no such
topic was generated in the first LDA run. Thus, we
applied cascaded LDA approach, i.e. we ran LDA a
second time only on the earthquake-related Tweets.
The results of these two runs are presented in the
section on the “Results and Validation” section.

Accuracy assessment of the text classification

For assessing the accuracy of the Tweet classification,
we create a confusion matrix, in which positives repre-
sent all Tweets, which are categorized as earthquake
related, whereas negatives represent all Tweets which
are categorized as non-earthquake related. From the
confusion matrix, we compute the statistical measures
accuracy, error rate, precision, recall, and F-measure,
which are commonly applied in text mining (Feldman
& Sanger, 2007). The computation of these evaluation
statistics requires a gold standard for validation, which
we created through manual labeling of a subset of 1509
Tweets by 3 independent annotators. For the annota-
tion procedure, the three annotators were asked to
label each Tweet with “earthquake related” or “not
earthquake related.” The annotators were instructed
not to use context information (information about
the earthquake, potential emotional state of the personFigure 5. LDA plate notation (Based on Griffiths & Steyvers, 2004).
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sending a Tweet, etc.) when labeling the Tweets. The
inter-annotator agreement (Fleiss Kappa) showed a
comparatively high value of 0.886, as explained in sec-
tion the “Results and Validation” section).

Spatial hot spot analysis

In the next step, we investigate spatial hot spots in the
categorized earthquake-related Tweets. Therefore, we
create a regular grid (cell size 1 km × 1 km) and
summarize all Tweets within a grid cell. We chose
this grid size by considering the number of points
located in the study area and its size. Concretely, we
used a technique from the area of point pattern analysis
(Wong & Lee, 2005), which takes the size of the study
area and the number of points into account to deter-
mine the optimal cell width:

l ¼
ffiffiffiffiffiffiffi
2
A
n

r
;

where l is the side length of a grid cell,A is the size of study
area, and n is the number of points in the study area.

Then, the earthquake-related Tweets are normalized
over the population – we used the LandScan popula-
tion layer at a resolution of 800 m (Oak Ridge National
Laboratory, 2017) – and the overall number of Tweets
per cell to prevent the undesirable effect that densely
populated areas dominate the picture. Finally, we per-
form the actual hot spot analysis by applying the well-
known Getis-Ord G* method (Getis & Keith Ord, 1992;
Ord & Getis, 1995) that detects local attribute clusters
in our data.

Validation: earthquake and damage footprint
modeling

For validation purposes, we compare the earthquake
and damage footprints generated by our methodology
to the official footprints, provided by public authori-
ties. For the earthquake footprint, we use the pre-
computed map by the US Geological Survey (USGS)
that can be obtained from their website (US
Geological Survey, 2016).

For the damage footprint, we use the loss model for
earthquakes provided by the FEMA. We apply the
basic equation Loss ¼ Hazard � Vulnerability �
Exposure for generating a modeled damage map for
the earthquake event. The Hazard is given by the earth-
quake footprint provided by USGS, representing the
measured peak ground acceleration (PGA) that the
earthquake has triggered, i.e. how hard the earth has
been shaking at different geographic locations. For the

Exposure and the Vulnerability factors, we used the
HAZUS building grid, which contains information
about the aggregated building type and building cost.
Using this information, a simplified damage footprint
can be modeled.

Results and validation

This section presents the results that we obtained from
applying the methodology described in the previous
section with respect to topic modeling, according accu-
racy assessment, and spatial hot spot analysis.

Topic modeling

Table 2 shows the topic–word distribution (in fact, the
stems of the original words in the Tweets) of the first
LDA iteration for the “earthquake” topic, in which the
word “earthquake” has a probability of 43.30%, which
is extraordinarily high. Furthermore, the words “cali-
fornia” and “damage” appear in this topic.

The results presented in Table 2 are highly appro-
priate to generate the earthquake footprint. However,
in this first iteration, no stand-alone “damage” topic
was generated. Thus, we applied a cascading LDA
approach to examine the earthquake topic in more
detail. Table 3 shows the according topic–word distri-
bution for four subtopics.

As expected, the word “earthquake” is by far the
word with the highest probability in all subtopics.
The other words provide an indication about some
granular differences within the earthquake topic. Like
this, it can be clearly distinguished between different
reporting processes: ad-hoc earthquake reports during
the night, post-hoc earthquake reports in the morning
after the event, damage reports, and the wine bucket
challenge.

The identification of a distinct damage subtopic
shows that this information is hidden in the overall
earthquake topic from the first LDA iteration. The last
subtopic (bucket challenge) represents an event called
the “wine bucket challenge,” a commonly used

Table 2. Word (stems) distribution for the “earthquake” topic.
Word Probability (%)

Earthquak 43.30
California 5.90
Damag 2.80
Slept 2.50
Colleg 1.80
White 1.70
Report 1.60
Challeng 1.60
Hope 1.20
Stand 1.20
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campaign in social media to raise awareness and raise
funds for people who were affected by the Napa earth-
quake. Thus, the bucket challenge subtopic can be
considered earthquake related, even though it has no
direct value for disaster management.

To further investigate the validity of our conclusions,
we performed some explorative analysis steps. Overall,
7160 Tweets were categorized as earthquake related in
the entire dataset of 94,458 Tweets that were posted on
the day of the earthquake. The distribution of Tweets
across the four subtopics presented in Table 3 within the
overall set of earthquake-related Tweets is as follows: 42%
are ad-hoc earthquake reports, 32% are post-hoc reports,
15% are damage-related posts, and 11% refer to the wine
bucket challenge.

Figure 6 illustrates the different temporal signa-
tures of the four subtopics. These signatures confirm
the interpretation of the subtopics as described
above. The ad-hoc report subtopic shows a peak
between 03:00 a.m. and 06:00 a.m., the post-hoc
report subtopic between 06:00 a.m. and 12:00 noon,
the damage reports keep steadily increasing over the
day, and the bucket challenge is strongly present in
the afternoon and the evening.

The spatial distribution of the points within the
subtopics does not vary considerably. The hot spot
analysis revealed concentrations around the epicenter
for the damage and the ad-hoc report topics, whereas

the post-hoc report and bucket challenge topics show
no significant hot spots.

Accuracy assessment of the text classification

Table 4 summarizes the results of our statistical validation
for a varying number of topics that are generated by the
LDA process. These figures are based on three indepen-
dent annotators whose Fleiss Kappa value (denoting the
inter-annotator agreement) of 0.886 is particularly high.
The numbers in Table 4 show that the precision (true
positives over true positives plus false positives) is extra-
ordinarily high, ranging from 94.97% to 97.29%, depend-
ing on the number of topics. The same applies to the
accuracy (all positives over all Tweets), ranging from
81.05% to 86.41%. Yet, there is a clear trade-off between
precision versus accuracy and recall (true positives over
true positives plus false negatives), which are inversely
proportional when changing the number of topics.

For our study, a high precision value means that
Tweets, which have been recognized as earthquake
related, are to a great degree actually earthquake
related, and few Tweets have been incorrectly cate-
gorized as earthquake related. On the other side, the
recall value can also be seen as the recognition rate.
A high recall value means that a large proportion of
actually earthquake-related Tweets have been recog-
nized and few Tweets have been incorrectly

Table 3. Subtopics of the “earthquake” topic.
Subtopic interpretation Word probability distribution

Ad-hoc reports during the night 0.326*earthquak; 0.045*california; 0.032*wake; 0.024*feel; 0.019*report; 0.018*usg; 0.015*shit; 0.015*holi;
0.013*area; 0.012*sanfrancisco

Post-hoc reports in the morning after 0.238*earthquak; 0.071*feel; 0.060*sleep; 0.026*wake; 0.020*last; 0.019*night; 0.012*morn; 0.012*right;
0.009*damn; 0.009*good

Damage reports 0.110*earthquak; 0.068*napa; 0.057*damag; 0.050*california; 0.020*northern; 0.016*colleg; 0.012*love;
0.010*magnitud; 0.009*north; 0.009*report

Bucket challenge 0.071*earthquak; 0.046*challeng; 0.037*bucket; 0.030*napa; 0.028*near; 0.025*hit; 0.020*nomin; 0.020*white;
0.017*worri; 0.012*stand

Figure 6. Temporal signatures of the four subtopics.
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categorized as non-earthquake related. To combine
these two parameters, the F-measure (harmonic
mean between precision and recall) can be used,
which seems to be the most meaningful parameter
for our evaluation because it accounts for both,
incorrectly categorized earthquake-related and non-
earthquake-related Tweets. In addition, the probabil-
ities in the topic–word distributions are considered,
which change with a growing number of topics. In
our particular setting, 25 topics, an α-value of 0.0001,
and 1000 passes (learning steps) deliver the most
promising results with respect to identifying damage.

Spatial hot spot analysis

Figure 7 illustrates the results of our spatial analysis of
earthquake-related Tweets. The grid cells (colored in red–
yellow–blue) represent the significant hot spots of earth-
quake-related Tweets, while the polygons in the back-
ground (colored in shades of green) outline the official
USGS earthquake footprint in different PGA intensities.

For statistical validation, we overlaid the USGS foot-
print with the hot spots generated by our method. In a
first step, we created a simple confusion matrix of grid
cells matching the USGS and the Twitter footprints.
The numbers in Table 5 result in the following statis-
tical results: accuracy 86.45%, error rate 13.55%, preci-
sion 41.12%, recall 99.52%, and F-measure 58.19%.

In the next step, we compared the affected popula-
tion as determined by the USGS and Twitter footprints.
Therefore, we mapped the eight USGS classes for PGA
to the four confidence interval levels of the geospatial
hot spot analysis (see Figure 7). Figure 8 shows that the
mapping generally expresses a good match between the
two footprints. Yet, for high PGA values, the Twitter
footprint seems to overestimate the affected popula-
tion, which results from the imprecise mapping of
confidence interval levels the USGS earthquake classes.

Figure 7 and our validation demonstrate that the
Twitter hot spots match up remarkably well with
USGS’s earthquake footprint. Naturally, the hot spots
correspond to populated areas to some degree, for
instance, along highway 101 (going North, starting
from San Francisco) where the cities of San Rafael,
Petaluma and Santa Rosa are located. These cities are
relatively close to the earthquake’s epicenter and within
the official footprint, so the corresponding hot spots
can be considered as correctly identified.

On the contrary, other large cities like San
Francisco, Oakland and San Jose are located outside
USGS’s footprint and are correctly identified as cold
spots by our method. This is noteworthy because pre-
vious research mostly identified hot spots in large cities
due to the vast amount of Tweets posted in metropo-
litan areas (cp. Figure 2).

Figure 9 illustrates the results of our spatial analysis
of damage-related Tweets. The grid cells (colored in
red–yellow–blue) represent the significant hot spots of
damage-related Tweets, while the polygons in the
background (colored in shades of green) outline the
damage footprint as produced by FEMA’s HAZUS
loss model. Similarly to the earthquake footprints,
the damage footprints generated by Tweets and the
official model match quite precisely. Although the
general patterns correlate well and the larger cities
are again identified as cold spots, the intensity of
Tweet hot spots and monetary losses show some slight
differences. This particularly concerns the identifica-
tion of the area around Vallejo as a hot spot with
slightly lower confidence, even though heavy damage
was caused in the area.

Discussion

Although the results demonstrate that our approach
works reliably and accurately, there are still a number
of aspects that deserve thorough discussion. These

Table 4. Statistical validation of LDA outputs.
No. of
topics

Accuracy
(%)

Error rate
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

#Tweets
eq. topic Topic–word distribution

15 86.41 13.59 94.97 73.28 82.73 9167 0.328*earthquak + 0.038*california + 0.023*class
+ 0.021*ariana + 0.015*grand + 0.015*second + 0.014*minut
+ 0.012*earth + 0.012*kill + 0.011*queen

20 85.95 14.05 95.26 71.94 81.97 8284 0.376*earthquak + 0.051*california + 0.035*morn + 0.034*Twitter
+ 0.020*damag + 0.015*tire + 0.015*earli
+ 0.015*magnitud + 0.013*parent + 0.009*fall

25 85.35 14.65 96.48 69.55 80.83 7160 0.433*earthquak + 0.059*california + 0.028*damag + 0.025*slept
+ 0.018*colleg + 0.017*white + 0.016*report
+ 0.016*challeng + 0.012*hope + 0.012*stand

40 81.05 18.95 97.29 58.96 73.42 4906 0.566*earthquak + 0.077*california + 0.016*forev + 0.010*giant
+ 0.010*broke + 0.010*northern + 0.009*epicent
+ 0.008*finna + 0.007*window + 0.007*behind
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particularly concern not only the topic modeling
approach but also the interpretation of the semantic
topics, and the spatial hot spot analysis.

Machine-learning topic modeling

First of all, typical topic models have been designed for
edited text like newspaper articles or blog entries.
Social media posts usually contain a large portion of
noise and irregularities such as slang words, abbrevia-
tions, emoticons, irregular punctuation, “yoof speak,”
or other words that cannot be found in standard dic-
tionaries, with which most previous approaches work
(Eisenstein, 2013; Kireyev et al., 2009). These

challenges can greatly be overcome through extensive
preprocessing algorithms, which may, however, lead to
information loss through removal of important words.
Yet, a pertaining central research challenge is how to
integrate information derived from user-generated data
with measurements from technical sensors and contex-
tual information (Sagl, Resch, & Blaschke, 2015).
Furthermore, the number of topics covered by a
Tweet is typically low (due to the shortness of the
text) because each Tweet is treated as a single docu-
ment. This bag-of-words model is characterized by low
lexical redundancy and may thus lead to incoherent
words within one topic–word distribution (Mehrotra,
Sanner, Buntine, & Xie, 2013).

Figure 7. Twitter earthquake hot spots and USGS earthquake footprint. © OpenStreetMap (and) contributors; available under CC-
BY-SA Licence.

Table 5. Statistical validation of spatial analysis.
Twitter: EQ-related Twitter: Not EQ-related

Within USGS footprint 824 4
Outside of USGS footprint 1180 310

10 B. RESCH ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
t S

al
zb

ur
g]

 a
t 0

1:
42

 0
3 

A
ug

us
t 2

01
7 



Another critical aspect using a topic modeling
approach is the semantic interpretation of topics.
Currently, there is no standardized method for assign-
ing semantic meaning to a topic, leading to the uncer-
tainty whether the interpretation of the topic is actually
appropriate (Chang, Gerrish, Wang, Boyd-Graber, &
Blei, 2009). This aspect becomes even more critical
because the multinomial distribution of topics over
documents leads to potential shortcomings in giving

priority to the topic with the highest probability in that
a topic with similar probability may be a better fit for a
specific document. Also, this problem does not only
apply to the interpretation step but also to the manual
labelling procedure, which is prone to subjectivity.
Moreover, the bag-of-words approach that LDA uses
may lead to over-representation (e.g. a pop star’s heav-
ily re-tweeted post containing “a flood of tears”) or
underrepresentation (e.g. the use of several different
hashtags for the same event) of words in topics.
These aspects currently impede the development of
an automated method for interpreting the topics. In a
next short-term step, we aim to address this shortcom-
ing through a keyword-based interpretation to infuse
the generated topics with semantic meaning.
Furthermore, a more formal integration of the tem-
poral dimension into the process of interpreting
semantic topics needs to be developed in the future.
Currently, the temporal variations in the topic can be
regarded as a strong indication of anomalies in the
temporal domain, but our approach does not use a

Figure 8. Population affected by USGS and Twitter footprints.

Figure 9. Twitter damage hot spots and FEMA’s HAZUS loss modeling result. © OpenStreetMap (and) contributors; available under
CC-BY-SA Licence.
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structured method of integrated analysis of semantic
and temporal yet.

The cascaded approach of LDA allows for identifying
topics in higher granularity, as the extraction of the
“damage” subtopic shows in our case: We were able to
distinguish identify earthquake-related and damage-
related Tweets. Moreover, we could observe a distinct
difference in the temporal signatures of the subtopics.
Naturally, one shortcoming of this approach is that the
identification of such subtopics is limited by the recog-
nition rate (recall) of a topic in the first iteration.
Consequently, Tweets, which are not contained in a
topic in the first step, cannot be used in the cascading
approach.

A central advantage of LDA is its transferability to
other text corpora, and languages because of the rapid
adaptation of the unsupervised learning approach to
another text corpus (Kireyev et al., 2009). Applying this
approach to other scenarios and datasets only requires
slight modifications in the preprocessing procedures
and the interpretation of the generated topics. A cen-
tral remaining challenge is the establishment of a
meaningful, representative and non-redundant syno-
nym list.

Finally, a pertinent challenge is the choice of the
model parameters. Particularly for unstructured and
small text documents as social media posts, there is
no structured and formal approach to balance the
priors, the number of topics and the number of passes.
Thus, these parameters have to be defined in a trial-
and-error approach. This step is important because
these parameter choices are crucial for producing reli-
able outputs and for ensuring performance using larger
datasets. We found that a lower number of topics in the
first LDA iteration lead to a more comprehensive

earthquake-related topic, which can then be decom-
posed into subtopics in a second iteration. Generally
speaking, we can state that the optimal parameter set-
tings presented in this paper are not representative for
different analysis contexts. The settings may vary con-
siderably depending on the type of disaster, the size of
the study area, language, population distribution, tweet
density, or the absolute number of tweets.

The procedure of parameter selection was one of the
major issues in our research presented in this paper. As
our aim was to identify earthquake and damage foot-
prints, there was no uniform parameter selection for
both topics. Therefore, we had to take a compromise
between correctly identifying relevant Tweets and nar-
rowing down the identification procedure to minimize
false positives. This possibility for parametrization dis-
tinguishes our approach from keyword-based methods,
which check whether a certain word is present in a
dataset or not. Figure 10 shows the resulting maps for a
keyword-based Tweet selection (earthquake-related
Tweets on the left, damage-related ones on the right).
Two aspects are striking: First, only hot spots with a
confidence level of <99% and nonsignificant values are
present in the earthquake footprint, but neither are hot
spots with confidence levels between 90% and 99% nor
are cold spots. Second, the damage footprint only con-
tains nonsignificant values (no hot spots or cold spots).
This fact is subject to further investigation in future
research. Although there are some open research ques-
tions with respect to our approach, we can state that
the advantages of our approach are the combination of
words into topics (co-occurrence of words rather than
single words), the identification of non-anticipated
words (social media users oftentimes use their own
terminology), and the correspondence of word

Figure 10. Keyword-based Tweet hot spots (left: earthquake; right: damage). © OpenStreetMap (and) contributors; available under
CC-BY-SA Licence.
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combinations and topics (which is important because
of the particular und oftentimes non-standardized text
style in social media).

Spatial hot spot analysis

We assess local spatial autocorrelation using the Getis-
Ord G* statistics that delivers statistically significant hot
spots and cold spots. One issue with using this method
with Tweets is that single outliers (e.g. one single
highly active Twitter user) may produce a local hot
spot. Yet, this effect can be reduced by normalizing
the earthquake-related Tweets by the overall number of
Tweets and the population per cell. In addition, a more
fundamental question is whether traditional analysis
methods, which greatly rely on Waldo Tobler’s “First
Law of Geography” (Tobler, 1970), can actually be
applied to social media datasets because they may not
conform to steadily decaying distance relationships.

Another important aspect is that spatial scale strongly
determines the granularity of the topics. For instance, the
use of social media messages, which have been posted in
the vicinity of a disaster event, results in clearly distin-
guishable and crisp topic definitions, whereas data from
larger areas may dilute topic generation. Another aspect
of scale concerns the environment that is investigated.
While peaks in disaster-related posts will mostly be dis-
tinct and stand out as an anomaly, they may only cause a
smaller peak in densely populated urban areas with a high
number of regular (non-disaster-related) posts. This issue
can be addressed through a rigorous definition of an
evaluation method, balancing precision, recall, and F-
measure.

In addition, the characteristics of the social media
dataset itself lead to constraints in their analysis. These
shortcomings have been thoroughly discussed in pre-
vious literature (Steiger, Westerholt, Resch, & Zipf,
2015; Sui & Goodchild, 2011) and are therefore not
elaborated on in detail here. First, social media users are
not uniformly distributed over all age groups and educa-
tion levels and are thus not representative for the entire
population. Furthermore, the geolocation of Tweets is not
necessarily the actual location of the observation of a real-
world phenomenon even though Tweets are oftentimes
considered in-situ reports. The same applies to temporal
uncertainty. Finally, only a few percent of all Tweets
contain an explicit geolocation, further biasing the data-
set. The above-mentioned shortcomings may be greatly
mitigated by using a large enough dataset and conscious-
ness of the implications of interpreting the results.

Moreover, the different characteristics of diverse disaster
typesmay be reflected in social media. For instance, a flood
event, which is usually preceded by a significantly long

early warning phase, may cause a steady, but slow increase
in the number of Tweets sent. On the contrary, an earth-
quake event typically causes a distinct spike with steep
slopes in the number of posted Tweets because there is
literally no early warning phase. This also imposes impli-
cations on the analysis method, requiring differentmethod
sets and parameter settings, depending on the type of
disaster to be assessed.

Conclusion

This paper presented an approach to analyze social
media posts to assess the footprint of and the damage
caused by natural disasters through combining seman-
tic machine-learning techniques (LDA) with spatial
and temporal analysis (local spatial autocorrelation
for hot spot detection). This significantly advances the
state of the art because previous research mostly pur-
sued keyword-based approaches, neglected the spatial
dimension, or purely focused on geographic analysis
without taking semantics into account. Furthermore,
our machine-learning approach does not require far-
reaching a priori knowledge about the disaster event
(e.g. keywords to search for), which is an important
factor in social media-based analysis because social
networks often develop their own terminology (hash-
tags, expressions, etc.). Thus, our approach allows for
detecting or quantifying events that may not be char-
acterized through well-known keywords. In other
words, our approach aims to find the relevant “set of
words” to be used for the analysis.

Our results demonstrate that earthquake footprints
can be reliably and accurately identified in our case
study, and significant hot spots in local spatial autocorre-
lation provide valuable insights into the nature and the
specific spatial distribution of areas affected by an earth-
quake. In addition, a number of relevant semantic topics
could be automatically identified, which clearly show
differing temporal and spatial signatures. Furthermore,
we were able to generate a damage map that indicates
where significant losses have occurred. The validation of
our results using statistical measures, complemented by
the official earthquake footprint by USGS and the results
of the HAZUS loss model, shows that our approach
produces valid and reliable outputs.

Concluding, it can be stated that the research pre-
sented in this paper may improve current disaster man-
agement procedures through generating a new and
unseen information layer. Furthermore, result maps can
be produced in near real time because of the small tem-
poral lag in social media posts (as opposed to remote-
sensing-based approaches), and their in-situ character.
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Yet, there are a number of open challenges, which
will be addressed in future research, including the
optimization of the preprocessing routines, automated
interpretation of the generated semantic topics, the
development of a standardized method for determining
the best parameters for the semantic analysis, dealing
with the lacking representativeness (population-wise
and spatially) of social media posts, the creation of an
automated validation procedure, and the development
of a real-time monitoring system.

Acknowledgments

We would like to thank Dr. Wendy Guan from Harvard
University’s Center for Geographic Analysis for her support
through providing us with the Twitter data for our study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

We would like to express our gratitude to the European
Commission’s Horizon 2020 program for supporting the
project “E2mC – Evolution of Emergency Copernicus ser-
vices,” reference number 730082. Furthermore, we would like
to thank the Doctoral College GIScience [DK W 1237-N23]
at the Department of Geoinformatics – Z_GIS, University of
Salzburg, Austria, funded by the Austrian Science Fund
(FWF) for their support.

ORCID

Bernd Resch http://orcid.org/0000-0002-2233-6926
Florian Usländer http://orcid.org/0000-0002-8484-7393
Clemens Havas http://orcid.org/0000-0003-0390-5094

References

Bengtsson, L., Xin, L., Thorson, A., Garfield, R., & Johan, V.
S. (2011). improved response to disasters and outbreaks by
tracking population movements with mobile phone net-
work data: A post-earthquake geospatial study in Haiti.
PLoS Medicine, 8(8), e1001083. doi:10.1371/journal.
pmed.1001083

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent
Dirichlet allocation. The Journal of Machine Learning
Research, 3, 993–1022. http://www.jmlr.org/papers/v3/
blei03a.html

Boulos, M. N. K., Resch, B., Crowley, D. N., Breslin, J. G.,
Sohn, G., Burtner, R., . . . Chuang, K.-Y. S. (2011).
Crowdsourcing, citizen sensing and sensor web technolo-
gies for public and environmental health surveillance and
crisis management: Trends, OGC standards and applica-
tion examples. International Journal of Health
Geographics, 10(1), 1–29. doi:10.1186/1476-072X-10-67.

Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., & Blei,
D. M. (2009). Reading tea leaves: How humans interpret
topic models. In Bengio, Y., Schuurmans, D., Lafferty, J.
D., Williams, C. K. I., & Culotta, A. (Eds.), Advances in
neural information processing systems (pp. 288–296). Red
Hook, NY: Curran Associates.

Cresci, S., Cimino, A., Dell’Orletta, F., & Tesconi, M. (2015).
Crisis mapping during natural disasters via text analysis of
social media messages. In Wang, J., Cellary, W., Wang, D.,
Wang, H., Chen, S.-C., Li, T., & Zhang, Y. (Eds.), Web
Information Systems Engineering – WISE 2015 (pp. 250–
258). Cham, Switzerland: Springer International.
doi:10.1007/978-3-319-26187-4_21

de Albuquerque, J. P., Herfort, B., Brenning, A., & Zipf, A.
(2015). A geographic approach for combining social media
and authoritative data towards identifying useful informa-
tion for disaster management. International Journal of
Geographical Information Science, 29(4), 667–689.
doi:10.1080/13658816.2014.996567

Eisenstein, J. (2013). What to do about bad language on the
internet. In Proceedings of the 2013 conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies (pp. 359–369).
Atlanta, GA: Association for Computational Linguistics.

Feldman, R., & Sanger, J. (2007). The text mining handbook:
Advanced approaches in analyzing unstructured data.
Cambridge: Cambridge University Press.

Getis, A., & Keith Ord, J. (1992). The analysis of spatial associa-
tion by use of distance statistics.Geographical Analysis, 24(3),
189–206. doi:10.1111/j.1538-4632.1992.tb00261.x

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific
topics. Proceedings of the National Academy of Sciences,
101(suppl 1), 5228–5235. doi:10.1073/pnas.0307752101

Guan, X., & Chen, C. (2014). Using social media data to
understand and assess disasters. Natural Hazards, 74(2),
837–850. doi:10.1007/s11069-014-1217-1

Herfort, B., Schelhorn, S.-J., de Albuquerque, J. P., & Zipf, A.
(2014). Does the spatiotemporal distribution of tweets
match the spatiotemporal distribution of flood phenom-
ena? A study about the River Elbe flood in June 2013. In
Hiltz, S. R., Pfaff, M. S., Plotnick, L., & Shih, P. C. (Eds.),
Proceedings of the 11th International ISCRAM Conference
(pp. 747–751). University Park, PA: Pennsylvania State
University. Available from http://www.iscram.org/legacy/
ISCRAM2014/papers/p101.pdf

Hiltz, S. R., Kushma, J., & Plotnick, L. (2014). Use of social
media by US public sector emergency managers: Barriers
and wish lists. In S. R. Hiltz, M. S. Pfaff, L. Plotnick, & P. C.
Shih (Eds.), Proceedings of the 11th International ISCRAM
Conference (Vol. 279: pp. 602–611). University Park, PA:
Pennsylvania State University. Available from http://www.
iscram.org/legacy/ISCRAM2014/papers/p11.pdf

Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text
classification using machine learning techniques. WSEAS
Transactions on Computers, 4(8), 966–974.

Imran, M., Castillo, C., Lucas, J., Meier, P., & Vieweg, S.
(2014). AIDR: artificial intelligence for disaster response.
In Proceedings of the 23rd International Conference on
World Wide Web (pp. 159–162). New York: ACM.
doi:10.1145/2567948.2577034

Kircher, C. A., Whitman, R. V., & Holmes, W. T. (2006).
HAZUS earthquake loss estimation methods. Natural

14 B. RESCH ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
t S

al
zb

ur
g]

 a
t 0

1:
42

 0
3 

A
ug

us
t 2

01
7 

https://doi.org/10.1371/journal.pmed.1001083
https://doi.org/10.1371/journal.pmed.1001083
http://www.jmlr.org/papers/v3/blei03a.html
http://www.jmlr.org/papers/v3/blei03a.html
https://doi.org/10.1186/1476-072X-10-67
https://doi.org/10.1007/978-3-319-26187-4%5F21
https://doi.org/10.1080/13658816.2014.996567
https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
https://doi.org/10.1073/pnas.0307752101
https://doi.org/10.1007/s11069-014-1217-1
http://www.iscram.org/legacy/ISCRAM2014/papers/p101.pdf
http://www.iscram.org/legacy/ISCRAM2014/papers/p101.pdf
http://www.iscram.org/legacy/ISCRAM2014/papers/p11.pdf
http://www.iscram.org/legacy/ISCRAM2014/papers/p11.pdf
https://doi.org/10.1145/2567948.2577034


Hazards Review, 7(2), 45–59. doi:10.1061/(ASCE)1527-
6988(2006)7:2(45)

Kireyev, K., Palen, L., & Anderson, K. (2009, December).
Applications of topics models to analysis of disaster-related
Twitter data. NIPS Workshop on Applications for Topic
Models: Text and Beyond, Whistler, BC. Retrieved from
http://www.umiacs.umd.edu/~jbg/nips_tm_workshop/15.
pdf

Kongthon, A., Haruechaiyasak, C., Pailai, J., & Kongyoung, S.
(2012). The role of Twitter during a natural disaster: Case
study of 2011 Thai flood. In Kocaoglu, D.F., Anderson, T. R.,
Daim, T. U., Jetter, A., Weber, C. M. (Eds.), 2012 proceedings
of PICMET’12: Technology management for emerging tech-
nologies (pp. 2227–2232). Piscataway, NJ: IEEE.

Mehrotra, R., Sanner, S., Buntine, W., & Xie, L. (2013).
Improving LDA topic models for microblogs via tweet
pooling and automatic labeling. In Proceedings of the
36th International ACM SIGIR Conference on Research
and Development in Information Retrieval (pp. 889–892).
New York: ACM. doi:10.1145/2484028.2484166

Middleton, S. E., Middleton, L., &Modafferi, S. (2014). Real-time
crisis mapping of natural disasters using social media. IEEE
Intelligent Systems, 29(2), 9–17. doi:10.1109/MIS.2013.126

Oak Ridge National Laboratory. (2017). LandScan Global
Population Database. Retrieved from: http://web.ornl.
gov/sci/landscan/.

Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation
statistics: Distributional issues and an application.
Geographical Analysis, 27(4), 286–306. doi:10.1111/
j.1538-4632.1995.tb00912.x

Ortigosa, A., Martiin, J. M., & Carro, R. M. (2014). Sentiment
analysis in Facebook and its application to e-learning.
Computers in Human Behavior, 31, 527–541. doi:10.1016/
j.chb.2013.05.024

Pak, A., & Paroubek, P. (2010). Twitter as a corpus for
sentiment analysis and opinion mining. In N. Calzolari
(Conference Chair), K. Choukri, B. Maegaard, J. Mariani,
J. Odijk, S. Piperidis, . . . D. Tapias (Eds.), Proceedings of
the seventh international conference on Language Resources
and Evaluation (LREC’10) (1320–1326). Valletta, Malta:
European Language Resources Association (ELRA).

Panagiota, M., Jocelyn, C., & Erwan, P. (2011). State of the
art on remote sensing for vulnerability and damage assess-
ment on urban context. Grenoble, France: URBASIS
Consortium.

Resch, B. (2013). People as sensors and collective sensing -
Contextual observations complementing geo-sensor net-
work measurements. In J. M. Krisp (Ed), Progress in loca-
tion-based services (pp. 391–406). Berlin: Springer.

Resch, B., Summa, A., Sagl, G., Zeile, P., & Exner, J.-P.
(2015). Urban emotions — Geo-semantic emotion extrac-
tion from technical sensors, human sensors and crowd-
sourced data. In G. Gartner & H. Huang (Eds.), Progress in
location-based services 2014 (pp. 199–212). Cham,
Switzerland: Springer International.

Resch, B., Summa, A., Zeile, P., & Strube, M. (2016). Citizen-
centric urban planning through extracting emotion infor-
mation from Twitter in an interdisciplinary space-time-
linguistics algorithm. Urban Planning, 1(2), 114–127.
doi:10.17645/up.v1i2.617

Robinson, B., Power, R., & Cameron, M. (2013). A sensitive
Twitter earthquake detector. In Proceedings of the 22nd

International Conference on World Wide Web, (999–1002).
New York: ACM. doi:10.1145/2487788.2488101.

Roche, S., Propeck-Zimmermann, E., & Mericskay, B. (2013).
GeoWeb and crisis management: Issues and perspectives
of volunteered geographic information. GeoJournal, 78(1),
21–40. doi:10.1007/s10708-011-9423-9

Sagl, G., Resch, B., & Blaschke, T. (2015). Contextual sensing:
Integrating contextual information with human and tech-
nical geo-sensor information for smart cities. Sensors, 15
(7), 17013–17035. doi:10.3390/s150717013

Sakaki, T., Okazaki, M., & Matsuo, Y. (2010). Earthquake
shakes Twitter users: Real-time event detection by social
sensors. In WWW ’10: Proceedings of the 19th
International Conference on World Wide Web pp. (851–
860). New York: ACM.

Spence, P. R., Lachlan, K. A., & Rainear, A. M. (2016). Social
media and crisis research: data collection and directions.
Computers in Human Behavior, 54, 667–672. doi:10.1016/j.
chb.2015.08.045

Spielhofer, T., Greenlaw, R., Markham, D., & Hahne, A.
(2016). Data mining Twitter during the UK floods:
Investigating the potential use of social media in emer-
gency management.” In 3rd International Conference on
Information and Communication Technologies for Disaster
Management (ICT-DM) (pp. 1–6). doi:10.1109/ICT-
DM.2016.7857213.

Steiger, E., Resch, B., & Zipf, A. (2015). Exploration of
spatiotemporal and semantic clusters of Twitter data
using unsupervised neural networks. International
Journal of Geographical Information Science. doi:10.1080/
13658816.2015.1099658

Steiger, E., Westerholt, R., Resch, B., & Zipf, A. (2015).
Twitter as an indicator for whereabouts of people?
Correlating Twitter with UK census data. Computers,
Environment and Urban Systems, 54, 255–265.
doi:10.1016/j.compenvurbsys.2015.09.007

Steyvers, M., & Griffiths, T. (2006). Probabilistic topic mod-
els. In T. Landauer, D. McNamara, S. Dennis, & W.
Kintsch (Eds.), Latent Semantic Analysis: A Road to
Meaning. Hillsdale, NJ: Lawrence Erlbaum.

Sui, D., & Goodchild, M. (2011). The convergence of GIS and
social media: Challenges for GIScience. International
Journal of Geographical Information Science, 25(11),
1737–1748. doi:10.1080/13658816.2011.604636

Terpstra, T., de Vries, A., Stronkman, R., & Paradies, G. L.
(2012, Apri). “Towards a realtime Twitter analysis during
crises for operational crisis management. In Proceedings of
the 9th International ISCRAM Conference, Vancouver, BC.

Tobler, W. R. (1970). A computer movie simulating urban
growth in the Detroit region. Economic Geography, 46,
234–240. doi:10.2307/143141

US Geological Survey. (2016). Earthquakes. Retrieved from
http://earthquake.usgs.gov/earthquakes.

Wong, D. W. S., & Lee, J. (2005). Statistical analysis of
geographic information with ArcView GIS and ArcGIS.
Hoboken, NJ: Wiley.

Zhao, J., Dong, L., Junjie, W., & Ke, X. (2012). MoodLens:
An emoticon-based sentiment analysis system for Chinese
Tweets. In Proceedings of the 18th ACM International
Conference on Knowledge Discovery and Data Mining
(SIGKDD) (pp. 1528–1531). New York: ACM.
doi:10.1145/2339530.2339772

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE 15

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
t S

al
zb

ur
g]

 a
t 0

1:
42

 0
3 

A
ug

us
t 2

01
7 

https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(45)
https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(45)
http://www.umiacs.umd.edu/%7Ejbg/nips_tm_workshop/15.pdf
http://www.umiacs.umd.edu/%7Ejbg/nips_tm_workshop/15.pdf
https://doi.org/10.1145/2484028.2484166
https://doi.org/10.1109/MIS.2013.126
http://web.ornl.gov/sci/landscan/
http://web.ornl.gov/sci/landscan/
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
https://doi.org/10.1016/j.chb.2013.05.024
https://doi.org/10.1016/j.chb.2013.05.024
https://doi.org/10.17645/up.v1i2.617
https://doi.org/10.1145/2487788.2488101
https://doi.org/10.1007/s10708-011-9423-9
https://doi.org/10.3390/s150717013
https://doi.org/10.1016/j.chb.2015.08.045
https://doi.org/10.1016/j.chb.2015.08.045
https://doi.org/10.1109/ICT-DM.2016.7857213
https://doi.org/10.1109/ICT-DM.2016.7857213
https://doi.org/10.1080/13658816.2015.1099658
https://doi.org/10.1080/13658816.2015.1099658
https://doi.org/10.1016/j.compenvurbsys.2015.09.007
https://doi.org/10.1080/13658816.2011.604636
https://doi.org/10.2307/143141
http://earthquake.usgs.gov/earthquakes
https://doi.org/10.1145/2339530.2339772

	Abstract
	Introduction
	Related work
	Method: spatial, temporal, and semantic analysis
	Data and study area
	Data preprocessing
	Tokenization
	Tokens to Lowercase
	Removing URLs
	Removing Numbers
	Removing Special Characters
	Synonym Handling
	Removing Short Words
	Removing Stop Words
	Removing Unique Words
	Stemming
	Vectorization and Market Matrix

	Machine-learning for Extracting Semantic Information from Tweets: Topic Modeling with Cascading LDA
	Accuracy assessment of the text classification
	Spatial hot spot analysis
	Validation: earthquake and damage footprint modeling

	Results and validation
	Topic modeling
	Accuracy assessment of the text classification
	Spatial hot spot analysis

	Discussion
	Machine-learning topic modeling
	Spatial hot spot analysis

	Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	References



