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Detailed knowledge regarding thewhereabouts of people and their social activities in urban areas with high spa-
tial and temporal resolution is still widely unexplored. Thus, the spatiotemporal analysis of Location Based Social
Networks (LBSN) has great potential regarding the ability to sense spatial processes and to gain knowledge about
urban dynamics, especially with respect to collective human mobility behavior. The objective of this paper is to
explore the semantic association between georeferenced tweets and their respective spatiotemporal where-
abouts.We apply a semantic topic model classification and spatial autocorrelation analysis to detect tweets indi-
cating specific human social activities. We correlated observed tweet patterns with official census data for the
case study of London in order to underline the significance and reliability of Twitter data. Our empirical results
of semantic and spatiotemporal clustered tweets show an overall strong positive correlation in comparison
with workplace population census data, being a good indicator and representative proxy for analyzing
workplace-based activities.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Cities aremultifunctional complex systems serving asmajor hubs for
a number of human social activities. With more than half of the world's
population living in urban areas and a continuing urban growth (United
Nations Population Fund, 2008), the capability to provide viable service
infrastructure (roads, public transport, energy supplies, etc.) for thema-
jority of people is a rising challenge. The characterization of urban struc-
tures can facilitate urban and transportation planning processes
providing valuable information, which helps to predict the increased
pressure on existing urban infrastructures. Regular commuting from
workplaces to places of residence, and activities originating from these
areas, aremajor examples of daily routineswithin urban areas, influenc-
ing human mobility and affecting transportation planning. In the UK in
2013, a person on average made 145 trips with 19% of all trip purposes
related to business and commuting activities (Department for
Transport, 2014).

Determining the frequency and spatial distribution of travel origins
and destinations for every trip purpose is a principal quantitative
study area currently carried out by mobility surveys (Morris,
Humphrey, & Tipping, 2014). However, they are expensive in terms of
the required labor input and usually lead to limited sample sizes.
Thus, the investigation of typically larger spatiotemporal human activity
clusters obtained from crowdsourced information may help to
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understand commuting patterns and reveal specific urban structures
such as workplace concentrations.

In this context, emerging, inexpensive and widespread sensor tech-
nologies have created new possibilities to infermobility data for explor-
ing urban structures and dynamics. This growing availability of mobile
devices equipped with GPS sensors having broadband internet access,
allows users to actively participate and create content through mobile
applications and location-based services (ITU, 2014).

Particularly georeferenced Twitter data is a promising opportunity
to understand geographic processes inside online social networks. The
enormous potential of interactive social media platforms like Twitter
has been increasingly recognized by numerous research domains over
the last years. Although there is a growing research body using Twitter
data to analyze urban processes, empirical research towards the valida-
tion of human social activities revealing urban structures and human
mobility patterns using crowdsourced information is still widely unex-
plored (Resch, Beinat, Zipf, & Boher, 2012).

In a previous study we introduced a semantic and spatial analysis
method, through which we were able to extract human mobility flows
from uncertain Twitter data (Steiger, Ellersiek, & Zipf, 2014). However,
it remains to be investigated whether we can find similar semantic
layers that represent collective human behavior in co-occurrence with
underlying social activity.

Therefore, research question (RQ1) investigates the possibility of ex-
ploring urban structures through characterizing spatiotemporal and se-
mantic patterns of human social activities. Hence, we extract topics
covering work-related and home-related activities that reflect typical
collective human behavior (e.g., city-scale human mobility). Thus, the
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first research question aims to find evidence for the reflection of collec-
tive behavior in tweets. In a further step, the second research question
(RQ2) seeks to validate these findings against reliable census data. In
particular, we examine associations and correlations between tweets
as a proxy indicator of human social activities and available census pop-
ulations. Summarizing, the main goal of this paper is to validate the de-
tected human social activity clusters from RQ1 with official UK census
data.

We have chosen London to be a reasonable study site, given the vast
number of Twitter users in this city, providing us with a large enough
data sample for our research. This second research question is particu-
larly important against the background of a broad range of uncertainties
that arise with Twitter data analysis (s. sub-section 2.1). To the best of
our knowledge, no available study has conducted this kind of validation
between semantic information extracted from Twitter data and official
census information. We aim to provide a first empirical ground truth
on how representative and trustworthy tweets for the inference of so-
cial activities indicating human mobility are. We propose a suitable
methodological approach for answering these questions.

2. Background

The dataset used in this analysis is collected fromTwitter.Within on-
line social networks like Twitter, individuals can create an online profile
and communicate with other users by sharing common ideas, activities,
events or interests (Boyd & Ellison, 2007). Twitter further enhances
existing social networks by adding a spatial dimension becoming a
LBSN and allows users to exchange details of their personal location as
a key point of interaction (Zheng, 2011). Users can post short status
messages, namely tweets with up to 140 characters. With the permis-
sion of the user, each tweet contains a corresponding geolocation ac-
quired from the GPS sensor within the mobile device. Therefore, user
posts in Twitter represent a spatiotemporal digital footprint
(geolocation and timestamp of tweet) with a semantic information
layer (content of tweet message).

Georeferenced tweets correspond to particular locations and are in-
fluenced by each user's individual perception of urban space (Fig. 1).
Thus, Twitter data and specific contextual information might serve as
an indicator on how strongly the virtual and physical worlds are con-
nected with each other. However, unlike with Foursquare where users
can “check in” at predefined venues (restaurants, hotels, etc.), we do
not have any a priori knowledge regarding underlying human social
Fig. 1. Information layers accord
activities in Twitter. One interesting question is therefore concerned
with investigating whether single tweets denoting a specific semantic
incident tend to co-occur with similar other tweets being close in geo-
graphic space and time. Such clustering behavior might provide con-
verging evidence about underlying social activity. Our given example
tweet “I'm at work” (see Fig. 1), for instance, indicates a particular
human social activity which may characterize an underlying urban
structure. In this case a possible indication of a workplace.
2.1. Potential limitations of Twitter data analysis

When analyzing spatiotemporal and semantic information from
Twitter, we face several data-specific uncertainties, including a number
of components such as the location information, the extracted knowl-
edge and the applied methodology.
2.1.1. Location uncertainty
The location information retrieved by built-in GPS receivers might

be inaccurate due to different effects. These include intrinsic effects
like adverse mobile device characteristics, but also extrinsic factors
such as the built environment or the GPS dilution of precision
(Zandbergen & Barbeau, 2011). Furthermore, users can individually
choose to add their precise location to a tweet or just a general attached
location information (such as a city or neighborhood). This might result
in imprecise and coarse location information of geotagged tweets.
2.1.2. Sampling Biases
The spatial distribution of tweets in location-based online social net-

works is also spatiotemporally heterogeneous as users do not contribute
records equally across space and time. Particularly the spatial distribu-
tion of tweets strongly varies on different real-world scale levels (coun-
try, city, borough, etc.) and might be too sparse in some geographical
areas (Sengstock & Gertz, 2012). Moreover, when focusing on the
ratio between the number of active Twitter users and the overall popu-
lation, there is also a mismatch between the population and the sam-
pling frame. This effect might lead to exclusion or under/over-
representation of certain population groups (Heckman, 1979). In conse-
quence, unrepresentative subsets and different sample sizes from the
whole amount of tweets might be generated depending on the Twitter
information and analysis approaches (e.g., only georeferenced tweets).
ing to Resch et al. (2012).
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2.1.3. Uncertain semantic knowledge
Weare facing a number of uncertaintieswithin the extracted knowl-

edge from Twitter data. Users might not post information in Twitter ad
hoc, i.e., they are rather referring to past or future events. Furthermore,
the textual component of tweets is a cohesive string of words. These
word vectors are vague and semantically uncertain, so they might
only be a weak indicator of a positive real-world observation. In other
words, people using Twitter have individual motivations to post infor-
mation and are also perceiving, identifying and interpreting their sur-
roundings differently from each other, deciding what is worthwhile
tweeting.

2.1.4. Uncertainties caused by applied methods
The exploration of spatial and semantic information from

georeferenced Twitter tweets requires methods from spatial statistics
as well as semantic analysis, given the dataset and its measurement
characteristics (see further up in this sub-section). This results in uncer-
tainties within the application of spatial and semantic methods. Al-
though we do not know about the distribution of specific geographic
phenomena and their semantic complexities within tweets, parameter
estimations like distance measures, minimum point reachability and
number of clusters are required to perform clustering.Moreover, the se-
mantic parameter inference processes involved (especially in non-
spatial methods) oftentimes assume stationarity across geographic
space. However, this is an unrealistic assumption given the high degree
of heterogeneity (e.g., due to topography or socio-economic factors) es-
pecially in urban environments (Fotheringham & Wong, 1991).

2.2. Related work

The exploration of spatiotemporal patterns to characterize human
mobility and social interactions is one of the main research goals across
a variety of disciplines and has become a major study focus due to the
increasing, widespread use ofwireless communication devices in recent
years (Giannotti & Pedreschi, 2008). Investigating processes that influ-
ence the interaction between humans and the urban environment is
key to understanding specific mobility patterns and their spatiotempo-
ral distribution. Therefore, numerous studies focus on extracting indi-
vidual and collective human daily activity patterns by analyzing
crowdsourced information, such as taxi trip records (Liang, Zheng, Lv,
Zhu, & Xu, 2012), GPS traces (Azevedo & Bezerra, 2009; Jiang, Yin, &
Zhao, 2009) or large set of mobile phone records (Candia & González,
2008; Gao, 2014). Researchers investigate the spatiotemporal character
of human behavior to find daily and weekly reoccurring clusters of fre-
quently visited locations as an indicator of the underlying trip purposes
(Bagrow & Koren, 2009; Phithakkitnukoon & Horanont, 2010). More,
the estimation and inference of home andworkplace locations to derive
regular commuting profiles in particular has gained significant research
attention due to its impact on transportation planning, reflecting the bi-
modal nature of human mobility (Kung, Greco, Sobolevsky, & Ratti,
2014).

Furthermore, a significant body of literature exists in using
crowdsourced human mobility data from social media to examine the
relationship between social activities as indicators for underlying
human mobility behavior. Several studies (Cheng, Caverlee, Lee, & Sui,
2011; Cranshaw, Schwartz, Hong, & Sadeh, 2012; Hasan, Zhan, &
Ukkusuri, 2013) use social media check-in data from Foursquare to an-
alyze collective human mobility and activity patterns to infer urban
(Wakamiya, Lee, & Sumiya, 2011) and user-specific characteristics
(Noulas, Scellato, Mascolo, & Pontil, 2011). A validation of these results
with cellphone locations revealed similar collectivemovement patterns
of people showing spatial and social proximity (Cho, Myers, & Leskovec,
2011). Kling, Kildare, and Pozdnoukhov (2012) and Ferrari, Rosi,
Mamei, and Zambonelli (2011) followed a similar approach with Twit-
ter data and also extracted urban motion patterns with identified spa-
tiotemporal activity hot spots within the city. Regarding human
mobility analysis from Twitter, Hawelka et al. (2014) and Li,
Goodchild, and Xu (2013) found a correlation between tweet locations
and certain socioeconomic characteristics of people. Furthermore, the
estimation of work/home locations (Krumm, Caruana, & Counts, 2011)
and related mobility flows have revealed similar patterns when com-
pared with community survey data (Gao, 2014). Andrienko and
Andrienko (2013) additionally correlated the distributions of places
where people tweet with US population densities (r = 0.52).

Summarizing, we can state that the majority of studies within the
current research focus of human mobility analysis using social media
have investigated spatiotemporal distributions to infer social activities
by analyzing the textual component of posts without validating these
inferred spatiotemporal and semantic human activity clusters. We ad-
dress this research gap by investigating the reliability of spatial, temporal
and semantic information indicating specific human social activities and
whereabouts of people from georeferenced tweets.

3. Methodology

Several sequential processing steps are necessary for finding over-
lapping human social activity patterns among tweets. Fig. 2 provides
an overview of our analysis framework that comprises three main
steps after twitter data retrieval: data pre-processing, semantic similar-
ity assessment, and spatiotemporal autocorrelation analysis. First of all,
tweets are collected in real time using the official Twitter streaming
API.1 Since we are interested in geospatial, temporal and semantic anal-
ysis, we only queried georeferenced tweets within our study area
(Table 1) and did not restrict the data collection by any further type of
keyword selection or filter.

3.1. Pre-processing

Initial pre-processing is necessary to reduce the semantic dimension
of noisy raw tweets by generating word vectors. The semantic tweet
content is therefore processed to remove whitespaces and punctua-
tions. In the next step, all tweet corpora from Twitter undergo a natural
language processing step by applying tokenization, stemming and stop
word removal. The raw tweets are a cohesive string of words and are
therefore split up into single words through tokenization. The advan-
tage and performance of this approach has been described by Metke-
Jimenez, Raymond, and MacColl (2011). Afterwards, common stop
words are filtered out as many frequently occurring “small” words do
not contain any valuable information. This is why they are excluded to
reduce the amount of noise in the tweet content. We use a standard
stop word list as suggested by Lewis, Yang, Rose, and Li (2004).The re-
maining tweet corpus act as the input for the following semantic simi-
larity assessment.

3.2. Semantic similarity assessment

Semantic similarity among tweets for a given associated topic is an
indicator for coinciding human social activity (Noulas et al., 2011)
(RQ1). In order to assess semantic similarity we use Latent Dirichlet Al-
location (LDA), a semantic probability-based topic extraction model in-
troduced by Blei, Ng, and Jordan (2003). This unsupervised machine
learningmodel identifies latent topics and correspondingword clusters
from our large collection of tweets and has been applied in previous
studies (Pan, 2011; Kling et al., 2012) This technique reduces the se-
mantic dimensions and works efficiently, especially on large datasets
given a previous training set by clustering co-occurring words into
topics (“bag-of-words”model). It is a sophisticatedmethod, particularly
in comparison to arbitrary simple keyword filtering techniques which
have limited scalability (Becker & Gravano, 2011; Jackoway, Samet, &

https://dev.twitter.com/docs/api/streaming


Fig. 2. Overview of the analysis framework.
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Sankaranarayanan, 2011). The LDAmodel is able to distinguish between
and assign similar phrases with different context into separate topics.
Other than quantified weighted word vectors representing term-
frequency and inverse document frequency (TF-IDF) scores, LDA as-
sumes that documents (in our case tweets) contain a random number
of latent topics per document α, whereby each topic is characterized
by a distribution over words β (Fig. 3). Parameter z is the specific asso-
ciated topic for an individualwordwwithin each document. In contrast,
θ denotes the topic distribution for the overall number of documentsM,
each being of length N.

One of the main challenges when applying LDA is the posterior pa-
rameter estimation and computation of variables such as the number
of topics k. Therefore we use Gibbs sampling (a Markov chain Monte
Carlo method) for LDA parameter inference. This sampling method
solves a key inferential problem and optimizes parameter values with
respect to the number of topics (Fig. 4). Results show the highest log
likelihood over all tweets with 11 topics (logMLEk = 2 = −1,189,078)
following the topic model selection by Griffiths and Steyvers (2004).
3.3. Spatial autocorrelation analysis

Since our main objective is to extract statistically significant spatio-
temporal and semantic human activity clusters from Twitter (RQ1),
we need to analyze the degree of dependency among similar/dissimilar
semantic observations in geographic space. To assess whether observed
nearby tweets cover the same topics and show similar associated topic
indicator values or not, we apply local measurements of spatial associa-
tion (Fischer &Wang, 2011). Spatial processes are indicated by the pres-
ence of significant spatial autocorrelation (Getis & Ord, 1992), which
quantifies Tobler's first law of geography: “Everything is related to ev-
erything else, but near things are more related than distant things”
(Tobler, 1970, p. 234). All test statistics for measuring spatial autocorre-
lation assess the extent to which empirically inferred spatial associa-
tions deviate from the null hypothesis of complete spatial randomness
(CSR). In our study we use local indicators of spatial association (LISA)
as introduced by Anselin (1995). These enable the identification of spa-
tial clusters and spatial outliers denoting our targeted human social
activities.
Table 1
Meta information for our selected Twitter dataset.

Dataset Greater London (UK)

Bounding box (WGS 84) −0.5543, 51.2386, 0.3038, 51.731
Timespan 31/07/2013–31/07/2014
Covered area 3265.387 km2

Number of geotagged tweets after
pre-processing

20.4 million

Number of individual users 476,071
3.3.1. Analysis scale
Any spatial analysis requires appropriate scale adjustment. This ad-

justment is usually reflected by a spatial weight matrix (termed W).
This matrix models spatial relationships between all tuples of observa-
tions. In our casewedefine a neighborhood size of 250m, sincewe com-
pute the average distance from every polygon line segment to the
centroid of this areal polygon for all statistical polygonal units in
London. The output units are electoral wards derived from London bor-
oughs, representing a certain neighborhood area and constitute the ob-
servation scale level for our research. Since the two observed topics each
are inherently diverse and theoretical scale limits are greatly unknown,
we argue that this region-oriented point of view is themost suitable ap-
proach with respect to the examined modeled processes.

3.3.2. Local Moran's I
The Local Moran's Ii statistic (Anselin, 1995) investigates correlations

between spatial units and their surrounding spatial lags. Spatial lags are
formed by observations having a nonzero spatial weightWij, i.e., having
some spatial relationship with the focal observations i. Variable x is the
estimated sample mean of X, which in our case represents the probabi-
listic LDA topic association indicator.

Ii ¼
xi−x ̅ð Þ

1=n
Xn

j¼1
xj−x ̅
� �2

Xn

j¼1
wij x j−x ̅

� � ð1Þ

z Iið Þ ¼ Ii−E Iið Þffiffiffiffiffiffiffiffiffiffi
V Iið Þp ð2Þ

Given a sufficiently large number of samples n, the resulting test sta-
tistic Ii is asymptotically Gaussian. We therefore conduct significance
testing by means of normal approximation. Hence, we have to trans-
form Ii to standard derivatives (z-scores, see Eq. 2). A positive/negative
value for Ii indicates positive/negative spatial autocorrelation,
i.e., spatially close features tend to have similar/dissimilar attribute
values. By arranging the obtained z-scores on a Moran scatterplot
Fig. 3. LDA graphical model according Blei et al. (2003).



Fig. 4. Topic Model results, showing the log-likelihood (logMLE) of all tweets for different
numbers of topics (k).

Fig. 5. Temporal distribution of home-related topics.
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(Anselin, 1993), we can distinguish between two different kinds of local
spatial autocorrelation clusters:

• HH and LL. Observations showing a high (HH) or low (LL) z-score and
being surrounded by neighbors with similar characteristics. These ob-
servations are part of a larger spatially homogenous region.

• HL and LH. Observations with z-scores being dissimilar to those of
their neighbors. These observations are part of a larger spatially het-
erogeneous region and can thus be considered spatial outliers.

Since the Local Moran's Ii statistic identifies spatial clusters of fea-
tures with attribute values similar in magnitude (HH and LL), we are
able to detect distinct human activity patterns over geographic space
(RQ1).

3.3.3. Getis Ord Gi
⁎

Local Moran's I can detect neighborhoods comprising similar values.
However, it is not able to distinguish local pockets of either high or low
attribute values. Thus, we additionally perform a hot spot analysis by
using the Gi* method (Ord & Getis, 1995) This method is able to:

G�
i dð Þ ¼

Xn

j≠0
wijx j−W�

i x ̅

SD xð Þ nS�1i
� �

−W�
i
2

h i
= n−1ð Þ

n o1=2
ð3Þ

where S�1i ¼ ∑
n

j¼1
w2

ij and W�
i ¼ ∑

n

j
wij:

In 3,Wij represents the spatial weight shared by points i and j, and x
represents the variable value (the probabilistic LDA topic association in-
dicator) for location j. Significance testing with Gi* can also be done by
using normal approximation. The statistic as presented in 3 is already
in the form of a z-score and must therefore not be further converted.

By correlating the results of both methods explained above we are
able to find spatially autocorrelated values of high magnitude (correla-
tion between HH and significant positive Gi* values), medium magni-
tude (HH, but no significant Gi* value) and low magnitude
(correlation between HH and significant negative Gi* values). The de-
tected tweet clusters showing high Ii and Gi* z-scores indicate spatially
homogenous patterns (Local Moran's Ii) comprising a strong dominance
of semantic topics (Gi*). These observed clusters are a proxy indicator of
“home” and “work” related social activities and are correlated in the fol-
lowing sectionwith data obtained fromavailable UK census populations
(RQ2, s. Section 4).

4. Results

In the following section we summarize the results of the previously
described analysis framework Section (3), whichwe applied in our case
study, as described below.

4.1. Case study Greater London

Our case study is based on a one-year sample of georeferenced
tweets from the area of Greater London.We have chosen this particular
case study due to the availability of reliable open access census data,
allowing us to answer RQ2. Table 1 shows further details regarding
the retrieved Twitter data.

4.2. Results of semantic topic modeling with LDA

Figs. 5 and 6 show the temporal decomposition of the LDA-based
probabilistic topic extraction for the highest assigned (N0.03) topic-
associated words “work” and “home” over all tweets. For simplification
in the descriptive parts of the paper, we only refer to each topic by label-
ing it with themost dominantly associatedword. Furthermore, for visu-
alization purposes, we only show the five words with the highest
probabilities of being assigned to a topic in Figs. 5 and 6. As the LDA
model embodies textual documents as a mixture of topics, these
words are the most likely to have generated the original text corpora.
Otherwords also appear and show lower probabilities of being assigned
to a topic (b0.03). By visualizing all home-associated tweets we can de-
tect a cluster C1 of average low home topic counts between 12 pm
(noon) and 7 pm (n b 200). In contrast, a lot of home-related tweets
(n N 400) have been posted from 9 pm onwards until 1 am during the
whole week (Cluster C2) and between 9 am and 3 pm on the weekend.
Cluster C3 corresponds tomedium topic intensities (x ¼ 0:2)with a con-
centration of work-related topics (n ~ 300) between 7 am and 8 pm



Fig. 6. Temporal distribution of work-related topics.
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during weekdays. While Tuesdays and Wednesdays show significant
work topic associations until 11 pm (n N 200) these counts decrease
on Thursdays and Fridays (n b 200). Cluster C4 contains a high amount
Fig. 7. Spatiotemporal topic frequencies of work- and home-classified topics during weekdays a
as a weighted graph network.
work associated topics with increased topic indicator values during
weekday periods between 8 am and 11 am.

The graph in Fig. 7 visualizes the frequency distribution of work and
home topic-associated tweets aggregated over all seven weekdays
binned into hourly slots. Looking for association rules and terms
which show a significant correlation with the extracted home and
work topics, a term adjacency matrix represented as a graph highlight-
ing themost frequently occurring terms is additionally shown in thefig-
ure. The more terms mutually correlate, the higher the edge weight is
and the more closely they appear in our graph. For instance, the terms
“home”/“weekend” and “work”/“today” correlate by more than 0.5
and are therefore associated. When focusing on themost frequently oc-
curring terms within work- and home-classified tweets over time, we
can detect semantically stronger associations for specific words reveal-
ing human activities.

4.3. Results of spatial autocorrelation analysis

After previously extracting temporal-semantic information, which
can be seen as an indicator for social activities, we now focus on the spa-
tial aspects of the data andwhereabouts of people for different time pe-
riods. With the applied Local Moran's Ii measure we can assess the
degree of spatial association for all geographic neighborhoods of topic-
classified tweets. This way, local spatial clusters (high Ii z-scores) of
human social activities can be inferred. Subsequently, we assess the
dominance of topics (hot spots) across geographic space using the Gi⁎
statistic.

Having a closer look at the spatiotemporal distribution of work-
associated tweets during weekdays (Fig. 8), we can detect time-
dependent work cluster patterns with dominant topic clusters of high
ndmost frequent associated occurring words for the exemplary peaks a), b) and c) shown



Fig. 8. Local spatial clusters (HH Ii) of work-dominant topics (Gi
⁎) with significance test.
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topic intensities inside the City of London. Spatial clusters that are char-
acterized by a high Local Moran's Ii z-score (HH) and a significant posi-
tive Gi

⁎ z-score with a given p-value below 0.05, are colored in red on
the map. In total, 85% of highly positive Gi

⁎ z-scores, indicating work-
dominant topics, fall within spatial clusters (HH Ii). The distribution of
observed Gi

⁎ z-scores and their quartiles inside the boxplot shows a
proximate normal value distribution with a mean close to zero. Very
high Gi

⁎ z-scores within the given adjusted confidence level (95%)
above 1.96 standard deviates or 1.5 interquartile range (appearing in
the upper box-and-whisker plot in Fig. 8) are statistically significant
hot spots of work-dominant topics. Therefore, we can reject the null hy-
pothesis (CSR) for our observations. Since testing multiple hypotheses
Fig. 9. Local spatial clusters (HH Ii) of home-do
on a single sample of data increases the risk of obtaining false-positive
results (type I errors), the significance levels in our research are adjust-
ed by applying the False Discovery Rate (FDR) (Benjamini & Hochberg,
1995).

As a result, the highest positive Gi
⁎ z-scores, indicating high work

topic-associated tweets, occur during the period between 6 am and
6 pm, spatially clustering (HH Ii) inside the City of London. Furthermore,
we observe that the high work-related values are clustering as spatial
patterns nearby the city center (Westminster) and the financial busi-
ness district (Canary Wharf). These clusters with a high positive auto-
correlation visually match with the workday population density in the
2011 UK census data. In contrast, work-related tweets spatially cluster
minant topics (Gi
⁎) with significance test.



Fig. 10. Scatterplot results correlating work-clustered tweets with workplace census.

Fig. 11. Scatterplot results correlating home-clustered tweets with residential census.

262 E. Steiger et al. / Computers, Environment and Urban Systems 54 (2015) 255–265
in the vicinity of Leicester Square, but show significant negative Gi⁎ z-
scores (cold spots). This means that tweets posted at the square are
less dominantly covering work-related topics and are rather a mixture
of different topics.

Looking at home-related spatial autocorrelation results (Fig. 9), spa-
tial clusters (HH) of high Gi

⁎ z-scores are more dispersed over the inner
City of London. In total, 87% of highly positive Gi⁎ z-scores, indicating
home-dominant topics, fall within spatial clusters (HH Ii). Previously
detected work-related local spatial clusters within the Westminster
borough and along the CanaryWharf district show no positive autocor-
relation with home-related topics. In contrast, the area southwards of
CanaryWharf is characterized by a high amount of spatial tweet clusters
along the Thames river, and visually matches the residential population
density according to the UK census. Gi

⁎ z-scores of home-related topics
have a lower amount of values appearing in the upper box-and-
whisker plot (see Fig. 9), exceeding the critical z-scores (with a 95% con-
fidence), indicating less significant hot spots. These hot spots of home-
related topics between weekend periods have a more widely dispersed
distribution over whole area of Greater London including the outskirts
of the city.

4.4. Correlation with UK census Data

For our case study we use census data provided by the UK Office for
National Statistics (ONS) under Open Government License v. 2.0 (Office
for National Statistics, 2012). The first visual comparison of the spatial
autocorrelation results in Section 4.3 with census data revealed specific
similarities and overlapping patterns.

In the next step, we quantify the statistical relationship between
outcomes of the spatial autocorrelation analysis with workday and res-
idential census data to investigate how reliable derivedhomeandwork-
place clusters from Twitter data are. The UK census collects population
statistics for statistical output areas (OA) – the last collection took
place in 2011 – in which output areas have a defined minimum and
maximum population criterion, mainly for privacy reasons with an av-
erage cell size of roughly 1 km2. These statistical areas constantly
change and are aggregated or disaggregated with adjacent vicinities ac-
cording to demographic factors such as the population distribution.

Within the published datasets we extracted output areas for work-
day populations and residential populations.Workplace population sta-
tistics are an estimate of the overall population working in an area
during the working day. Residential populations include all residents
aged 16 to 74 whose living places are in the area. In order to correlate
census populations with single tweet observations, we normalize all
population counts over the size of the regions to minimize differences
in values based on the size and the number of features in each output
area. Afterwards, we spatially aggregate all tweets belonging to spatial
clusters of high Local Moran's Ii z-score (HH) and having a significant
positive Gi

⁎ z-score (indicating clusters of high topic values) into over-
lapping output areas. In the next step, we normalize all selected tweets
over each user to avoid an over- or underrepresentation of particular
Twitter users in the census output areas as a result from varying tweet
frequencies. Finally, we Studentize both variables (census population
counts and aggregated home/work tweet counts) by subtracting the ar-
ithmetic mean and dividing by the respective standard deviation to be
able to compare these two different distributed variables and their vary-
ing intervals with each other.

Figs. 10 and 11 provide normalized scatter plots representing the
specific correlation of counts of work- and home-classified tweets
against the residential andworkplace population for each census output
area. Fig. 10 illustrates the Pearson correlation (rwork = 0.75 slope,
mwork = 0.87) between the amounts of semantic highly associated
tweets to work-related LDA-classified topics having a positive autocor-
relation and real-world workplace densities in the UK census data. The
statistical significance of this value is given since a t-test reveals that
the empirical t-value (20.46, α = 0.01, v = 2) exceeds the
corresponding critical value (9.925). Therefore, we can reject the null
hypothesis (no significant relationship between work topic clusters
and census workplace densities). Furthermore, the F-test results con-
firm the hypothesis that our given set of Twitter and census populations
are equally dispersed since 0.779 N 0.773 (f = 2, P = 99%). Output areas
with less workplace population, visible in the left lower corner of the
correlation plot, denote mixed urban areas of residential andworkplace
population with a subsequently weaker correlation for work-related
tweets. However, only an extremely weak statistical correlation
(rhome = 0.08/rS home = 0.11) is present for home topic classified and
spatially clustered tweets, as shown in Fig. 11.

A first hypothesis for this discrepancy of expected correlation results
is supported by Fig. 12, when analyzing human mobility patterns and
human behavior. Out of 37,765 clustered tweets (HH Ii) having a signif-
icant positive Gi

⁎ z-score, 19,679 posts (51%) spatially match public
transport polygons of station buildings derived from OpenStreetMap.
All major transportation hubs within London show a high amount
of home-classified tweets and constitute significant spatial clusters
with positive autocorrelation. Referring to the initially mentioned



Fig. 12. Local spatial clusters (HH Ii) of home-dominant topics (Gi
⁎) and overlay of public transport network with exemplary stations Euston, St. Pancras and King's Cross.
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characteristic of Twitter data (2.1), there is a strong indication that Twit-
ter users post home-related information in the proximity of public
transportation facilities, referring to past or future events.
5. Discussion

In this paper, we analyzed if georeferenced tweets cover collective
real-world characteristics within urban space. We also cross-validated
these patterns against authoritative census data. We analyzed detected
semantic topics indicating human social activities in terms of spatial au-
tocorrelation to detect specific clusters.Mainly, we investigated the cor-
relation between tweet activity clusters and census population
densities. Our results show that the conducted study has several limita-
tions that need to be addressed in future research efforts.

Within the initial pre-processing step (s. sub-section 3.1) the seman-
tic dimension of raw tweets is reduced to word vectors. Substantial se-
mantic information remains part of the tweet corpora, while additional
information that is irrelevant to our research questions is filtered out.
Since the dataset is highly uncertain involving colloquial writing styles
and unpredictable Internet-oriented terms, the efficiency of natural lan-
guage processing is likely to vary.

Regarding the applied methodologies when measuring semantic
similarities with Latent Dirichlet Allocation (Section 3.2), there are
some pitfalls within the bag-of-words assumption in particular. Words
that should be associatedwith the same topic might be assigned to sev-
eral different topics. Additionally, considering syntactical structures
such as n-gramswould enableword sequences to be allocated to several
topics, thus better accounting for real-world semantic complexities.
During the posterior parameter estimation and computation of input
variables, the LDA model assumes that, for instance, the number of
topics k have a probabilistic Dirichlet prior topic distribution. However,
this approach only infers LDA input parameters by considering the se-
mantic dimension. The computation of probability-based parameters
needs to be further adapted by taking the spatial dependence of seman-
tic topics over different geographic areas (chosen study area) and geo-
graphic scales (extent of the study area and interaction distances of
the observations) into account. Further, modified LDA versions like
Twitter-LDA (each tweet as a single document) and the author-topic
model (treating all tweets of the same user as a single document)
(Zhao, Jiang, Weng, He, & Lim, 2011) have not been included within
this study due to missing statistical validation and benchmarking pro-
cess of these methods' results.

The results of the spatial autocorrelation analysis (Section 3.3) show
a strong indication for hot spots of semantic similarity occurring over
time and space. Spatial autocorrelation statistics assess the degree of
spatial associations for an observed attribute by testing against a ran-
dom distribution. In our analysis we detected non-random behavior,
which is an indicator for systematic spatial patterns. Therefore, it can
be assumed that collective human behavior in urban spaces is reflected
in the semantics of Twitter, at least to a certain degree. However, we are
still lacking more detailed knowledge about such phenomena with re-
spect to their precise geographic distribution and stochastic properties
such as measures of dispersion (e.g., variance) (Goodchild, 2009).
More, we do not have knowledge regarding extrinsic factors driving
the geography of human behavior. These might impose effects such as
trends or intertwined global and local effects (Ord & Getis, 2001).

Furthermore, that autocorrelation results depend on the chosen pa-
rameters like the neighborhood definition. With respect to geographic
scale effects (Getis, 1999),wemight havemissed out on effects at differ-
ent scales. In our study we have chosen our analysis scale based on em-
pirical considerations, i.e., observations in neighborhoods of a certain
scale are compared against observations within the overall dataset on
a different scale.

Considering the advantages of spatial autocorrelation analysis, the
Local Moran's Ii statistic helps to identify the characteristics of local spa-
tial patterns. Since the degree of spatial association is evaluated by using
normal theory (Anselin, 1995), results can be easily compared and ex-
tended with other test statistics, such as the applied Gi

⁎. Therefore, com-
bined Local Moran's Ii and Gi

⁎ represent an efficient exploratory data
mining method for the detection of similar spatially homogenous pat-
terns with significant value accumulations.

When looking at our selected case study in London (Section 4.1),
we have chosen a popular well-researched study area regarding Twitter
analysis. However, the previous research is not exhaustive in terms of
the geographical distribution of Twitter usage, which highlights the
need for future studies to span a wider geographic coverage. Neverthe-
less, this research serves as a first benchmark answering how
trustworthy inferred social activities from Twitter based on spatial
characteristics are.

The observed spatial patterns of inferred human social activities are
a proxy indicator for the identification of urban residential areas and
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workplace areas. The results presented in Section 4.2 have revealed typ-
ical daily commuting patterns and temporal differences of home- and
work-related activities between weekdays and weekends, reflecting
the bimodal nature of collective human mobility. These observed
urban dynamics, of how people live, work and move in the city, are
also in line with similar studies analyzing mobile phone traffic (Sagl,
Loidl, & Beinat, 2012; Yuan, Raubal, & Liu, 2012).

This research can potentially be conducted in other regionswith lim-
ited access to official data and knowledge about socioeconomic process-
es within urban structures. When tweets are compared with official
continuous census data, these two different ascertained datasets
might lead to a possible sampling bias. Although we know the average
estimated census residential and workplace population having a mini-
mum and maximum set age limitation, we do not have any Twitter de-
mographics and know who exactly tweets. Also, the time span
of collected tweets differs from the census data creating a sampling
bias (Section 2.1) andmight have an influence on the overall correlation
results. However, since the census data are recorded only every ten
years, this factor cannot be dedicatedly excluded. Our results have em-
pirically shown the reliability of georeferenced tweets as a proxy of
human social activities, since tweet locations autocorrelate with real
world census observations and revealed similar, overlapping patterns.

Regarding the characterization of urban structure, the issue arises on
how to divide a city into areal units. Existing approaches include divi-
sion into arbitrary grid cells, Voronoi polygons or administrative bound-
ary polygons. When point-based measures of spatial phenomena
(tweets) are aggregated into population density polygons, which are
themselves aggregated from census data records, cohesive regions
might be artificially split up. With respect to real-world scales these ar-
bitrary constructs inevitably lead to the Modifiable Areal Unit Problem
(MAUP) Fotheringham & Wong, 1991).

6. Conclusion and future research

In this paper we presented a spatiotemporal and semantic analysis
framework for georeferenced tweets. Concluding the results answering
our first research question (RQ1 — assessing work-related and home-
related activities that reflect typical collective human behavior), we
have been able to detect significant clusters indicating home- and
work-related human social activities. Analyzing the temporal distribu-
tion of LDA-classified topics (Section 4.2) and most frequently associat-
edwords, wewere able to infer further information regarding collective
time-dependent human behavior. Using semantic topic modeling and
autocorrelation analysis (Section 4.3), we extracted spatial, temporal
and semantic clusters of human activities from tweets for our selected
case study in London.

The second research question (RQ2) of this paper attempted to in-
vestigate to what degree observed tweet clusters can be regarded as a
proxy of human social activities, i.e., to what extent they correlate
with available residential and workplace populations from official cen-
sus data. Semantically and spatiotemporally clustered work-related
tweets have shown strong positive correlation in comparison with
workplace population census data (Section 4.4), indicating that topic-
classified tweets are a potential proxy for real-world workplace-
related activities. In contrast, classified home-related topics from tweets
are only weakly correlating with residential populations from census
data. This might have been caused by either the involved uncertainties
of Twitter data (Section 2.1) or by the semantic complexity and diversi-
ty of the home-related topics thatmight therefore be considered being a
less representative proxy for residential activities.

The outcomes of this study may be considered in future research
work regarding the inference and trustworthiness of human mobility
patterns from crowdsourced data. Location inference of residential
and workplace areas are a key factor of the given transportation de-
mand. LBSN can help to better understand these processes and explore
the impact of urban spatial structures on travel demand and human
mobility as a future research direction. The presented approach can be
generalized to study human dynamics not only at an urban level, but
also on a regional or national level.

Further potentially interesting social activities related to home and
workmight also be inferred. Thismay constitute a useful source of infor-
mation to determine,which social activities correspond towhichunder-
lying urban structures, such as points of interest, landmarks, etc. Since
our results concerning home-related topics have shown spatial cluster-
ing in the vicinity of highly frequented squares and major transporta-
tion hubs, other social activities (e.g., mass events like concerts or
games)might also show a similar pattern and could thus lead to new in-
sights in characterizing urban mobility. The detection of human mobil-
ity patterns without a priori categorical information regarding certain
human social activities, however strongly depends on the reliability of
given semantic information.

Finally, after we were able to answer our initial research questions
(Section 1) and to provide new insights on human social activities in
LBSN, we hope to further encourage and foster new research.
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