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dimensionality, complexity and heterogeneity. However, user-gen- social network (LBSN);
erated datasets are of multi-scale nature, which results in limited self-organizing map (SOM);
applicability of commonly known geospatial analysis methods. semantic topic model; point
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self-organizing map (Geo-H-SOM) to analyze geospatial, temporal
and semantic characteristics of georeferenced tweets. The results
of our method, which we validate in a case study, demonstrate the
ability to explore, abstract and cluster high-dimensional geospatial
and semantic information from crowdsourced data.

1. Introduction

Analysis of data from social networks has recently become an established research field
in a number disciplines including geoinformatics, computational linguistics, computer
science, sociology, psychology or urban planning. Location-based social networks
(LBSNs) (Roick and Heuser 2013), regarded as a specific sub-domain of social networks,
create further research potential by adding a geospatial dimension and providing
location-embedded services. This is of central relevance because shared personal loca-
tions are becoming more and more a key point of interaction in digital communication
(Zheng 2011), whether users are uploading geotagged photos via Flickr or Instagram,
checking in at a venue with Foursquare, or commenting on a local event via Twitter.

These emerging, inexpensive and widespread ‘human sensor’ technologies have
facilitated new possibilities to discover (geographic) knowledge and to analyze human
behavior from social media data (Miller and Goodchild 2015). Additional value of this
kind of data in comparison to traditional geo-data comes from their spatiotemporal
resolution, which may complement or validate existing data sources and consequently
open up a wide variety of research avenues.




However, the acquisition of crowdsourced data differs from conventional approaches
in that underlying measurement processes are not well defined. For instance, the
technical properties of remote sensors are known, whereas the motivation, the accuracy
or the semantic correctness of a tweet are still unexplored. This results in a number of
uncertainties in the data, which have not been quantified yet.

Consequently also the analysis of Twitter data is prone to a variety of geospatial,
temporal and semantic uncertainties. First of all, the geospatial accuracy of a tweet can
be influenced by mobile device characteristics, urban environments or other factors such
as the GPS dilution of precision (Zandbergen and Barbeau 2011). Furthermore, users do
not contribute records equally in geographic space and time, resulting in a highly
heterogeneous distribution of tweets inside the LBSN. The geospatial distribution of
tweets, for instance, strongly varies on differing scale levels (country, city, neighborhood,
etc.) and is prone to be sparse in rural areas (Sengstock and Gertz 2012).

Georeferenced tweets also represent only a small fraction (2%-4%) of the entire
available tweet set. When focusing on the ratio between Twitter users and the general
population numbers, there is a clear mismatch between population and sampling frame
(Miller and Goodchild 2015). This effect, known as sampling bias, might lead to exclusion
or under/over representation of certain population groups (Heckman 1979). Thus,
depending on the Twitter information and analysis the researchers focus on, unrepre-
sentative subsets and different sample sizes might be generated.

Moreover, semantic information related to an event in time may refer to past or future
topics/activities. Compared to Foursquare posts where users can ‘check in’ at specific
venues (shops, hotels etc.), which already characterize specific categories of activities,
within tweets we do not have any a priori knowledge regarding users’ activities.

Also, the mentions of activities within tweets are relatively vague and semantically
uncertain (use of abbreviations, acronyms, etc., due to character limitations and Internet-
specific writing styles), and they might only be a weak indicator of a real-world observa-
tion as we have limited knowledge about the underlying social processes.

Even though these shortcomings in Twitter data are known, previous research on
spatial analysis methods to extract information from tweets has originally been defined
for particular datasets under a number of presumptions: local indicators of spatial
association  (LISA) (Anselin  1995), geographical weighted regression (GWR)
(Fotheringham et al. 2003) and others.

In other words, from a GlScience perspective, we are facing a lack of methods for
geospatial analysis of crowdsourced data (Steiger et al. 2015) and the combination of
different methods in the era of data-driven geography (Miller and Goodchild 2015),
which handles the high-dimensional uncertainty of spatiotemporal and geographic data,
e.g., in tweets.

In order to adapt to this new uncertain type of geo-data and to the shift from a data-
scarce to data-rich geographic research environment, Miller and Han (2009) defined the
field of geographic data mining, where computational methods for discovering patterns
in large, heterogeneous geographic datasets are applied. Yet, methods developed in this
field are nearly exclusively of a single-disciplinary nature, i.e., data are analyzed geogra-
phically, whereas no inherently trans-disciplinary methods (combining algorithms from
several research disciplines) have been defined. In this context, the neural network-
based ‘self-organizing maps’ (SOM) approach has been proven to be useful for analyzing



geographic data (Agarwal and Skupin 2008, Feng et al. 2014). However, it has not been
investigated yet whether a multi-dimensional SOM-approach combining methods from
the disciplines of geography and computational linguistics is usable for detecting
spatiotemporal and semantic clusters in Twitter data.

Resulting from the above challenges and the shortcomings identified in previous
approaches (Section 2), the goal of this paper is to evaluate the application of SOMs for
detecting high-dimensional (geospatial, semantic, temporal) clusters, instead of using
traditional spatial autocorrelation methods. This paper shows that SOMs are a promising
approach to explore, abstract and cluster geographic data while overcoming some of
the previously mentioned limitations (see Steiger et al. 2015, p. 20 for a more detailed
description). More precisely, the machine-learning process could foster discovery of
latent structures from high-dimensional georeferenced Twitter data to gain new insights
by utilizing all available semantic geospatial, and temporal information layers.

The research questions this paper answers are as follows:

(RQ1): How can relationships among people be discovered based on mentions of
their activities in a trans-disciplinary approach (geospatial, temporal and semantic
analysis) by analyzing vast numbers of unstructured georeferenced tweets using
SOMs?

(RQ2): How are the explored variations in intensity and similarity of collective human
activities related to (dis)similarities in the underlying urban structures?

This paper is structured as follows. We provide a short review of approaches for
spatial analysis in Section 2. Section 3 describes our proposed methodology for extract-
ing geospatial, temporal and semantic clusters from tweets. The results of the analysis
answering the research questions are presented in Section 4, followed by a discussion of
our methods and research results in Section 5. Section 6 has some final remarks and
outlines possible future research directions.

2. Related work

This section lays out related work in the areas of spatiotemporal and semantic analysis
methods (Section 2.1), Geo-SOM/H-SOM for tweet analysis (Section 2.2) and combined
approaches (Section 2.3).

2.1. Spatiotemporal and semantic analysis of Twitter data

The exploration of unstructured textual information from tweet posts requires text
mining methods and has been conducted using numerical statistics intending to create
semantic weighting factors such as term frequency (TF) (Hecht et al. 2011), term
frequency-inverse document frequency (TF-IDF) (Jackoway et al. 2011) and term-rank-
ing algorithms (Gupta and Kumaraguru 2012). However, generated term matrices are
sparse (Derczynski et al. 2013), since the textual information from tweet posts is
semantically highly uncertain and therefore requires more sophisticated text-mining
algorithms (Gelernter and Balaji 2013). Other approaches include a manual term and
keyword filtering (Andrienko et al. 2013), dimensionality reduction through latent topic



modeling techniques (Kling et al. 2012) and the application of semantic classification
algorithms such as named-entity recognition (NER) (Gelernter and Balaji 2013) or naive
Bayes (Zielinski and Buligel 2012).

The exploration of spatial information from georeferenced Twitter tweets requires
methods of spatial statistics and spatial analysis. Point clusters have therefore been
assessed by using Kalman filtering (Sakaki et al. 2010) and kernel density estimation
techniques (Li and Goodchild 2012). Spatial cluster analysis for point data has been
applied using density-based spatial clustering (DBSCAN) (Veloso and Ferraz 2011),
K-means (Pan and Mitra 2011) and spectral clustering (Cranshaw et al. 2012).

The limitations of data clustering algorithms such as DBSCAN and K-means regarding
required parameter inference, e.g., distance measures, minimum point reachability and
number of clusters, have been illustrated by several studies (Birant and Kut 2007, Jain
2010). Other approaches investigate spatial characteristics of georeferenced social media
data by simply aggregating point-based observations into grid cells (Feick and
Robertson in press), buffer zones (Lenormand et al. 2014), Voronoi polygons (Lee and
Sumiya 2010) or administrative bounding polygons (Crooks et al. 2015). However, when
point-based measures are aggregated into artificial polygons or grid networks, these
arbitrary constructs lead to the modifiable areal unit problem (MAUP) with respect to the
real-world scale (Fotheringham and Wong 1991).

Therefore, the following introductory paragraph will describe the advantages of SOMs
compared to existing clustering approaches by outlining the present research in order to
synthesize the SOM methodology closer to the field of GIScience.

2.2. Self-organizing maps, Geo-SOM and variants

SOMs were first introduced by Kohonen (1982, 1990) as a powerful type of artificial
neural network (ANN) which abstracts information from multi-dimensional primary
signals and represent data properties in a two-dimensional topological connected
output space. Openshaw et al. (1995) was one of the first geographers demonstrating
the advantages of neural networks for geographic analysis in a selected case study of
census classifications in Britain. Due to the growing complexity of spatial data and
analysis tasks (Miller and Han 2009), SOM as an unsupervised machine-learning algo-
rithm has been proven to be a performant ANN when comparing to classic data
mining and cluster analysis approaches (Ultsch and Vetter 1995, Reusch et al. 2005,
Watts and Worner 2009).

Related to GlScience, SOMs have been applied for spatial pattern detection (Spielman
and Thill 2008, Gorricha et al. 2013) and spatial clustering (Skupin and Hagelman 2005).
Furthermore, SOMs have been used for generalization purposes (Allouche and Moulin
2005, Sester 2005) and for exploratory data visualization (Vesanto 1999, Bruggmann
et al. 2013, Sagl et al. 2014). A broad overview on several applications of SOMs within
GIScience has been provided by Agarwal and Skupin (2008).

The Kangas Map (Kangas 1992) represents the first extension of the classic SOM
approach by also considering the geographical neighborhood of an input feature. This
best matching of geographical closer neurons has been further adapted by Bacéo et al.
(2005) introducing a geographical tolerance parameter within their developed Geo-SOM
framework.



Lampinen and Oja (1992) train a second-level map from the best-matching unit for each
input vector in order to derive a hierarchical SOM (H-SOM). Henriques et al. (2012) depict
the performance of an H-SOM to detect spatial clusters within a high-dimensional geo-
graphical dataset. Hagenauer and Helbich (2013) modified the hierarchical method to
discover patterns in spatiotemporal data generating a hierarchical spatiotemporal SOM
(HSTSOM). Feng et al. (2014) propose a further approach to combine Geo-SOM and H-SOM
methods based on a divide and group principle to further explore geographic data.

2.3. Combined approaches

In the area of social network analysis, several research articles (Boulet et al. 2008, Couronne
et al. 2013) have studied characteristics of individual users within large complex networks
of social media platforms by applying different SOM variations to structure social relation-
ships between users on a two-dimensional SOM output space. Bruggmann et al. (2013)
detect latent semantic structures and relationships of user-generated content between
Wikipedia articles and visualize thematic cluster using an SOM cartogram.

In the context of GIScience, Hagenauer et al. (2010) conduct a cluster analysis of point-
based crime pattern by applying an SOM and further enhance the approach using an SOM
as a text mining tool to classify unstructured citizen provided crime reports (Helbich et al.
2013). Sagl et al. (2014) demonstrated a combined SOM and spatial autocorrelation
approach to explore collective human activities through mobile network traffic data.

However, beside a social network analysis of Twitter metadata (user profile, follower/
following analysis), to the best of our knowledge no research articles exist to use SOMs
on highly dimensional, noisy Twitter data for the exploration of human activities to
characterize underlying urban morphological structures.

3. Methodology

The main novelty of the proposed approach is the combination of similarity distance-
based concepts (as initially proposed by Resch et al. 2015) that exist in the domains of
GlScience (i.e., Tobler's First Law) and computational linguistics (Aggarwal and Zhai
2012). Several sequential processing steps are applied to our tweets in order to compute
the similarity between the three information layers: linguistic and semantic content,
temporal information and geographic location.

The analysis framework described in Figure 1 includes three main steps after Twitter data
retrieval: Twitter data pre-processing, similarity assessment for all information layers and
the computation of an SOM in an unsupervised learning approach. We collected our own
data in the form of georeferenced tweets as only these are usable for applying geographical
analysis algorithms (see case study in Section 4). We used the Twitter Streaming Application
Programming Interface (API) (https://dev.twitter.com/docs/api/streaming).

3.1. Pre-processing

In order to derive meaning from tweets, the text is pre-processed using natural language
processing methods including tokenization, stemming and stop word filtering. This
reduces the semantic dimension of raw tweets by allowing the creation of word vectors.
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Figure 1. Analysis framework. The preprocessing step appears in Section 3.1. Semantic, geospatial
and temporal assessment are described in Section 3.2 with results of the case study presented in
Section 4.1. The Geo-SOM/Geo-H-SOM approach appears in Sections 3.3/3.4 and the corresponding
results of the case study are described in Sections 4.2 and 4.3.

Within the tokenization process, cohesive strings from tweet posts are split up into
single words (‘tokens’). The advantages of this method have been pointed out by Metke-
Jimenez et al. (2011). Afterwards the most common, frequently occurring ‘stop words’
(short-function words), not containing valuable information, are excluded to reduce the
amount of noise among the remaining tokens. We used the standard stop word list from
Lewis et al. (2004). Subsequently, the stemming process reduces all words to their stem,
base or root form to simplify further analysis. The remaining tweet corpora are the input
values for the following semantic similarity assessment.

3.2. Semantic, geospatial and temporal similarity assessment

We argue that tweets with similar linguistic features will also share high-semantic
similarities. Thus, it is likely that they also contain similar semantic information which
could be a potential indicator for coinciding social activities (Noulas et al. 2011).

In order to assess semantic similarity, we apply latent Dirichlet allocation (LDA) - a
semantic probability-based topic extraction model (Blei et al. 2003). This unsupervised
machine-learning model is a sophisticated method compared to previously used arbi-
trary keyword filtering techniques or word frequency driven approaches (e.g., TF/TF-ID)
with a limited scalability (Aggarwal and Zhai 2012), since LDA identifies latent topics by
clustering co-occurring words (bag-of-words model) from the given collection of tweets.
The LDA model distinguishes between similar phrases with different contexts and
assigns them to separate topics. LDA assumes that documents (in our case tweets)
contain a random number of topics per document a, where each topic is characterized
by a distribution over words f3 (Figure 2). z is the specific associated topic for an
individual word w within each document, while 6 denotes the topic distribution for
the total number of documents M each of N length.

One of the main challenges when applying LDA is the posterior parameter estimation
and computation of variables such as the number of topics k. Therefore, we are using
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Figure 2. LDA graphical model according to Blei et al. (2003).

Gibbs sampling considering a Markov chain Monte Carlo for the LDA parameter infer-
ence, as proposed by Griffiths and Steyvers (2004). This sampling from probability
distributions to obtain target distributions solves a key inference problem and optimizes
parameter values (Figure 2). Each tweet’s topic association (6,,) and topic-word associa-
tion (¢,) are the semantic input components to the Geo-SOM.

For assessing spatial similarity of processed tweets, we analyze their geographic
location and their geospatial distribution as follows. The geographic position (latitude
and longitude) of every tweet is used as a geospatial input component to the Geo-SOM.
Additionally, the nearest neighbor (NN) distance for each tweet is computed to assess
whether tweets indicating similar semantic activities cluster geographically. We there-
fore consider the general topology or geospatial relationships between the tweets
shown by point patterns and their mutual interaction distances as a representation of
the underlying geospatial context. The Euclidean distance d; between every feature i and
its NN for each given topic is a measure of statistical spatial dispersion and constitutes a
second Geo-SOM input component representing the geographic information layer,

W=3d. M
i=1

where n is the number of geographic features. Finally, the Geo-SOM considers the
temporal component in order to assess temporal similarity of activities mentioned in
tweets. Other than in exploratory time series analysis with time-related geospatial input
vectors, i.e., trajectories, we do not have any prior knowledge regarding the observable
underlying phenomena and their spatiotemporal patterns when using point observa-
tions like tweets (Hagenauer and Helbich 2013). Therefore, the main approach to dis-
cover temporal structures among our observations lies in hierarchically aggregating
Geo-SOMs to observe textual dependencies within time periods. For this purpose, we
create time bins covering (1) every hour of the day and (2) each day, as categorical
variables to weight tweets higher when sharing similar activities in a geographical
proximity and close in time. We derived these bin widths from our data sample size
(in order to have a large enough number of points in each bin for the local clustering
and subsequent Geo-SOM processes). However, our method is generically applicable to
any aggregation interval (e.g., daily, weekly, monthly etc.) since all lower level Geo-SOMs
are combined into one upper level Geo-H-SOM (see analysis framework Figure 1) to
detect matching temporal patterns (Guimaraes 2000).



3.3. Geographical SOM (Geo-SOM)

The applied SOM learning approach (Kohonen 1990, Agarwal and Skupin 2008) uses the
set parameter of Kohonen’s standard algorithm and the Geo-SOM parameter extension
(Bagao et al. 2005). For the initial training process with random weights using input
components for every information layer from the high-dimensional, geospatial, temporal
and semantic feature attribute space, a 15 X 15 neuron network was setup, having fewer
dimensions and within the limit of observations from the input space, as suggested by
Kohonen (2001). The chosen network size has been validated in an iterative performance
test following Feng et al. (2014). Based on an extracted random training cluster sample
set for each Geo-SOM, the spatial cluster proximity (average NN distance) and attribute
proximity have been computed together with the total amount of tweet points which
fall within (commission) and outside (omission) these clusters. For the whole case study,
the 15 X 15 neuron network size setup has shown the least amount of quantified
omission errors.

For each input vector, the map node with the smallest Euclidean distance within a
certain spatial neighborhood is defined, also known as best-matching unit (BMU).
Additionally, the nodes in the neighborhood of the BMU are also updated and moved
towards the direction of the input units (Figure 3) by repeating 10,000 training iterations
and a fine tuning phase until convergence is reached, where the learning rate a
decreases linearly from 0.5 to 0 and the final radius r is 0. During the Geo-SOM training
phase, variations of the tolerance parameter k = [0,4] have been tested to expand the
search radius for potential BMUs in order to increase/decrease the importance of
geographical coordinates (see Bacao et al. 2005 for tests on artificial datasets). A final
tolerance radius of k = 2 appears to be the most suitable distance when weighting
between attribute and geographic features having a tolerable distance between input
and mapped output attribute space (quantization error) with the least amount of
commission and omission errors within geographical space.

After training, the two-dimensional Geo-SOM output space with final BMU vectors
represents fractions of the input space, while topologically preserving geographic,
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Figure 3. Input space (three-dimensional) with units (light gray dots) and map node’s weight
vectors having the smallest Euclidean distance (BMU as dark gray dots). The final BMU positions
on the 2 x 2 sample unit Geo-SOM U-matrix output space (two-dimensional) are highlighted. Two
Geo-SOMs weight vectors are bivariately (Pearson’s r) correlated and also univariate spatially (Local
Moran’s 1) autocorrelated.



semantic and temporal properties of the original Twitter dataset for each individual LDA
topic. Geo-SOM parameters have been chosen by considering the feature characteristics
of the dataset having the main goal to observe local cluster pattern on a medium size
Geo-SOM (Kohonen 2001, Helbich et al. 2013).

The point features (tweets) are not aggregated into artificially delineated boundaries or
polygons, which would lead to the MAUP (Fotheringham and Wong 1991). Thus, the Geo-
SOM algorithm constitutes an analytical exploratory data mining process by abstracting
the main input data’s component characteristics themselves. The Geo-SOM also facilitates
the consideration of numerous additional input variables (e.g., more topics). One of the
main advantages of the Geo-SOM approach is the high scalability of the framework which
enables us to assess input component characteristics and to incorporate different geo-
graphic scales during the analysis. As a result, the approach is able to overcome the
limitations laid out in the introduction (e.g., high-dimensional uncertainty of data or
multi-dimensional cluster characteristics) since the combined methodology also shows
robust performance in handling noisy and uncertain Twitter data.

3.4. Hierarchical Geo-SOM (Geo-H-SOM)

In order to facilitate pattern detection over the whole dataset considering different
levels of granularity (and due to a better computational efficiency tested by Feng et al.
2014), we use a thematic agglomerative H-SOM in the last step (see Figure 1), aggregat-
ing and merging all previous Geo-SOM results. By design, an SOM compresses high-
dimensional input data into a two-dimensional map-like representation, where a Geo-
SOM considers the first law of geography by geographically restricting the search radius
and an H-SOM reveals information at different levels of detail. The combination of both
approaches by ordering and dividing the input vectors enables the identification of
meaningful cluster patterns. Therefore, we have chosen a combined Geo-SOM and
H-SOM approach since the main goal of our research is to detect latent structures of
locally occurring activities on a large geographic scale with the ability to assess these
cluster characteristics. A classic SOM would infer structures regardless of their geospatial
proximity, and one Geo-SOM over all tweets is not able to detect distinct local clusters
since the input signal from tweets is high-dimensional. The H-SOM combines the
separate Geo-SOM training results, where each Geo-SOM training result represents a
semantic topic. Since the search of the BMU is limited to a defined maximal geographi-
cal neighborhood aiming to detect local clusters, all Geo-SOM BMU weight vectors are
compared and grouped within the final merging H-SOM approach depicted by
Henriques et al. (2012) to detect intra-urban human activity patterns on a city scale level.

The evaluation of our proposed Geo-H-SOM algorithm underlines the great potential of
neural networks to perform spatiotemporal and semantic analysis on high-dimensional
and large volume data types such as tweets, in order to reveal complex latent structures.

For a simpler interpretation of the Geo-SOMs’ structures, hexagonal U-matrices are
used as a visual representation of the distances between adjacent neighboring neurons
using the trained vector derived from the input data dimension space. All trained Geo-
SOM output neurons are converted and plotted as U-matrices into geospatial vector
data structures (shapefiles). In this way, all calculated neuron distances can be easily
interpreted and visually presented with commonly available desktop GIS.
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Furthermore, the resulting SOM output space with each BMU’s weight is correlated
using R packages (cor, spdep) by computing Pearson’s r as a spatial bivariate association
measure, and Local Moran’s / (Anselin 1995) as a univariate spatial association measure.
That way, locations of spatial clusters and spatial outliers as well as the topological
relationship among spatial entities are identified. The Local Moran’s neighborhood size
is defined as the distance between each neuron and its neighboring neurons.

4, Case study and results

This section presents the results of the analysis framework (Section 3), which has been
applied to the case study described below (see Figure 1 for a visualization of the whole
analysis framework). We first illustrate the results of the semantic, geospatial and
temporal assessment (Section 4.1), then we lay out the results of the Geo-SOM analysis
(Section 4.2) and the Geo-H-SOM analysis (Section 4.3).

For our case study, we use a dataset containing 41.2 million georeferenced tweets
from the area of Greater London for one year. Table 1 provides further details regarding
the used Twitter data. Since we are interested in geospatial, temporal and semantic
analysis, we only query georeferenced tweets and did not restrict the data collection by
any further type of keyword selection or (language) filter.

4.1. Results semantic, geospatial and temporal similarity assessment

In the first step of this assessment (see method Section 3.2), we classified all collected
georeferenced tweets using LDA to analyze the temporal-semantic characteristics. The
corresponding histograms, aggregating tweets in hourly intervals, show a periodical
daily repeating signal of tweets classified according to the LDA extracted topics (k = 8)
(Figure 4). The LDA model assigns probabilities of mutual word occurrences for each
tweet to detect the most likely word overlaps. Figure 4 shows the words with the
highest probabilities for each topic. For purposes of visualization efficiency, we only
show the three words with highest probabilities.

From Figure 4, it is evident that topic 3 (T3) shows the highest amount of associated
tweets after 6 pm, especially on weekends. The words ‘game,” ‘cup’ and ‘match’ are
selected by the LDA model as the most dominant words for describing this specific
topic. These varying temporal-semantic frequencies indicate a linkage to real-world
sports events since the temporal distribution is characteristically dispersed with single
occurring peaks (league matches at the weekend, European cup matches during the
week on Tuesdays and Wednesdays).

Table 1. Meta information for our selected Twitter dataset.

Dataset Greater London (UK)
Bounding Box (WGS 84) —0.303, 51.238, 0.554, 51.731

Time span 1 January 2014-31 December 2014
Covered area 3.265,387 km”

Number of geotagged tweets after pre-processing 41.2 million

Number of individual users 476,071
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Figure 4. Temporal-semantic frequencies of all tweets posted within one year aggregated into
weekdays consisting of one hour time intervals for eight LDA classified exemplarily topics.

In contrast, T2 (dominant words ‘train,” ‘run’ and ‘back’) is characterized by a periodi-
cally repeating tweet signal. The majority of classified tweets are posted during week-
days between 8 am-10 am and 5 pm-8 pm, indicating morning and evening tweeting
patterns. Note that for simplification in the descriptive parts of the paper we are only
referring to each topic by labeling it with the most dominantly associated word.

In a second step, we analyze the geospatial-semantic characteristics of the dataset by
exploring a distinctive geographical distribution for every topic. Figure 5 exemplarily
illustrates the geospatial-semantic point densities for topic T2-train and T3-game. T2-
train shows a more dispersed distribution and geospatially concentrates along the
railway segments of London, whereas T3-game tweets mainly cluster within central
London and at few distinct locations. The point densities reveal high peaks of T2-train
in the vicinity of main public transport hubs.

4.2. Results of the Geo-SOM

As mentioned in Section 3, the geospatial, temporal and semantic assessment presented
in Section 4.1 constitutes the basis for further analysis to uncover relationships and to
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Figure 5. Geospatial-semantic point densities of LDA-classified tweets posted within one year
vertically extruded as spikes and aggregated for T2-train and T3-game (base map: Stamen Design
CC BY 3.0, data by OpenStreetMap CC BY SA).
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identify cluster patterns of human activities using the Geo-SOM algorithm. As mentioned
above, we used the following input features as distinct input components for the Geo-
SOM analysis (see method Section 3.3): each tweet’s day of post, hour of post, topic
association, topic-word association, geographic location (latitude and longitude), and
Euclidean NN distance.

For a simpler interpretation of the Geo-SOMs’ structures, hexagonal U-matrices are
used to plot the two-dimensional distances between neighboring neuron vectors. The
distance between the adjacent neurons is indicated by intensities of gray: light gray
(0.45-0.75 range) means that codebook vectors are close to each other in the input
space; dark gray (>0.75) between the neurons indicates a large distance of codebook
values. Thus, light gray (smaller values) indicate the presence of clusters since similar
tweets are closer on the Geo-SOM compared to dissimilar ones. Dark U-matrix areas in
between light areas can be interpreted as cluster separators and allow the visual
distinction of characteristic tweet patterns. Component planes (CPs) (Kohonen 2001)
show the relative values of each input variable’s codebook vectors in order to identify
correlations between input attributes. One can thus assess which components mainly
characterize and contribute to the inferred Geo-SOM clusters.

Figure 6 shows the results of the Geo-SOM analysis: Figure 6(a) illustrates the U-matrix
of the Geo-SOM (clusters are shown in different colors. Due to space constraints, we
have only shown detailed visualizations of Geo-SOM G-T2 and G-T3, Figure 7(c) shows an
overview of all Geo-SOM U-matrices) and the number of assigned tweets for the selected
topics T2-train/ T3-game; Figure 6(b) presents a map of three exemplary clusters for G-T2
(Geo-SOM, Topic 2) and G-T3 with the highest amount of associated tweets visualized in
geographical space (base map: Stamen Design CC BY 3.0, Data by OpenStreetMap CC BY
SA); Figure 6(c) depicts the CPs for the Geo-SOMs; and Figure 6(d) shows the correlation
matrix (each BMU'’s Pearson’s r and Local Moran’s | value) between all CP input variables,
where red indicates strong positive correlation and blue stands for negative correlation.
Crosses denote CP correlation values which are below the significance level of p = 0.05.
The correlation dendrogram represents the distance or dissimilarity on the horizontal
axis between each cluster grouped on the vertical axis.

The U-matrix of G-T2 reveals several separate clusters within the Geo-SOM output
space which correspond to the geographical locations of major transportation hubs for
Greater London (G-T2-C;_0). For instance, the input attributes of clusters with the
highest number of features (G-T2-Cyq,16/18) are highly similar in time, geographical
space and semantics. Hence, they have very close BMU weight vectors, whereas the
surrounding neurons’ weights are higher, which is indicated by darker hexagonal grids.
The results of G-T3 indicate the presence of fewer clusters in comparison to G-T2.
Clusters G-T3-Cy/,5/5 are large and geospatially concentrated in the vicinity of major
sports venues. A large cluster (G-T3-Cs) also converges within the areas of major public
squares and public transport hubs. When directly comparing G-T2 and G-T3, overlapping
cluster areas within the SOM, U-matrix output space can be visually identified. This
indicates a link between activities related to sports events and major public transporta-
tion hubs (G-T2-Cy9/11/12/16 and G-T3-Cs). When visualizing the geographic extent of
three exemplary Geo-SOM clusters with the highest number of assigned tweets (Figure 6
(b)), a link between the real-world geospatial objects can be drawn.
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Figure 6. Results of the Geo-SOM analysis: (a) U-matrix of two exemplary Geo-SOMs G-T2 and G-T3;
(b) map of three exemplary clusters for G-T2 and G-T3; (c) component planes for the Geo-SOMs; and
(d) correlation matrix (each BMU’s Pearson’s r and Local Moran’s | value). SOM G-T2 results represent
190,763 features (tweets), G-T3 132,553 features.
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Figure 7. (a) Geo-H-SOM U-matrix results with derived clusters. (b) Links back the derived clusters of
the Geo-H-SOM to the geographic space (base map: Stamen Design CC BY 3.0, data by
OpenStreetMap CC BY SA). (c) All previously computed Geo-SOM U-matrices and hot- and cold-
spots. (d) Correlation matrix of derived codebook vector distances from neighboring neurons (BMU)
for each Geo-SOM LDA topic.

Figure 6(c) shows positive LISA among each CP neuron’s weights with similar neigh-
boring features. Considering the given Local Moran'’s Z (/) scores and significance tests,
one can distinguish between local spatial autocorrelation clusters of high values (HH)
indicating distant neuron weight vectors, and low values (LL) indicating close neuron
weight vectors. The latter ones are the intended clusters since similar input features are
mapped close together whereas dissimilar ones are further apart within the CP space. A
further comparison of the CPs’ low-value spaces reveals strong resemblance between
the geographic location (CP5 and CP6) and the semantic attribute features (CP3 and
CP4). Several component structures appear: The majority of tweets during weekdays are
geospatially widespread within the city center, and the amount of tweets decreases the
further the inner city is away (T2-CP1/T2-CP2). In comparison, T3-CP1 shows fewer
tweets during weekday and weekend periods with a dispersed geospatial structure
and only a few distinct clusters. The topic and word association indicator for locations
in the outskirts of London is very high, especially for the event-related topic T3-game
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with distinct clusters surrounded by areas with a lower amount of tweets. The NN
distance (CP6) reveals distinct clusters of landmarks (stadiums, train stations, squares,
etc.) with a high amount of tweets being very close in geographic and semantic space
(CP3/CP4) surrounded by more dispersed tweet point patterns. In general, we can
conclude that tweets are more clustered within central London, which is highlighted
by a strong similarity between the CPs T2-CP1/2/3 and CP6.

The correlation matrix in Figure 6(d) statistically proves the strength of the relation-
ship between input CPs. Thus, we can conclude that all geographically correlating
features either correlate within the semantic or the temporal domain. Features having
either similar (positive r) or dissimilar (negative r) temporal attributes (CP2) also correlate
correspondingly within the semantic dimension (CP3 and CP4). Observed topics with
similar temporal characteristics (CP1 and CP2) also correlate within their geospatial
distribution (CP5 and CP6).

Strong positive correlations can be discerned for all time-related topic attributes in
CP1, except between T1-work and T3-game, T2-train and T3-game as well as T6-drink
and T7-watch. Temporal attributes of CP1 for T1-work, T2-train, T3-game and T4-shop
also show a link between their semantic attributes in CP3 and CP4. Furthermore, we
observe a high temporal correlation between the hourly classified topic T2-train in
CP2 and topic T4-shop. The semantic component plane CP3 shows a strong mutually
positive correlation between T1-work and T2-train. CP4, which incorporates the LDA
word association indicator, reveals similarly strongly semantic associations between
T2 and T4-shop as well as T3-game and T8-home. CP5 and CP6, describing the
geospatial attributes of the dataset, show a strong positive correlation between all
topics. T1-work and T2-train, as well as T3-game and T7-watch highly correlate
mutually in geographic space. Topics T3-game, T7-watch and T8-home along with
T5-eat and T8-home have a strong tendency to form dense clusters in similar geo-
graphic places.

The hierarchical cluster analysis using Euclidean distances based on the correlation
variables between all Geo-SOM CPs confirms that specific topics’ attributes appear as a
cluster branch within the temporal and geospatial clustered dendrogram (e.g., T2-CP1/
CP2 with T3-CP1/2, and T2-CP5/6 with T3-CP5/6 plus T1-CP1/2 with T8-CP1/2 and T1-C5/
6 with T8-CP5/6). Comparing all vertical dendrogram distances of these correlations, one
can detect that hierarchical clusters of the geospatial CP are more similar to each other,
compared to temporal and semantic CPs. Cluster branches within the temporal and
semantic CPs are thus grouped highly similarly or dissimilarly (e.g., outlier T5-CP1/2 and
T8-CP3/T3-CP4).

4.3. Results of the Geo-H-SOM

In the following H-SOM, the attributes of the input patterns (tweets) represented as an
output subspace within each computed Geo-SOM are used to train and group a
secondary unsupervised neural network (see method Section 3.4). This results in a
Geo-H-SOM that incorporates a fraction of each Geo-SOM and the previously observed
characteristic Twitter data pattern. Different clustering perspectives are extracted in the
lower level Geo-SOM, which can then be merged into a global H-SOM, allowing the user
to better understand and explore the overall emerging patterns (Henriques et al. 2012).
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The U-matrix of all Geo-SOMs resulting in the final Geo-H-SOM are depicted in
Figure 7: Figure 7(a) shows the H-SOM U-matrix results with derived clusters including
the number of assigned tweets and the corresponding pie chart of the five most
frequently occurring topics (shown in different colors) within the observed U-matrix
clusters covering the administrative boroughs accordingly. Figure 7(b) links back the
obtained clusters of the H-SOM to the geographic space (base map: Stamen Design CC
BY 3.0, Data by OpenStreetMap CC BY SA). Figure 7(c) illustrates all previously computed
Geo-SOM U-matrices and positive autocorrelating hot- and cold-spots. Figure 7(d)
visualizes the correlation matrix of derived codebook vector distances from neighboring
neurons (BMU) for each Geo-SOM LDA topic. The colors represent the resulting correla-
tion coefficient rcompineq (€ach BMUs Pearson’s r and Local Moran’s | value), where red
indicates a strong positive correlation and blue stands for a negative correlation.

The Geo-H-SOM in Figure 7(a) is an upper level SOM combining the attribute
information from the previous Geo-SOMs shown in Figure(c) and enables the inference
of larger geographical clusters and their underlying characteristics on a borough level.
The following U-matrix structures appear.

A high amount of tweets classified as T1-work and T2-train geographically cluster in
central London (H-C9/10/14/15) and are the most dominant set of topics. T4-shop/ T7-
watch have been the most frequently occurring classified topics outside the city center,
distributed across suburban boroughs in the peripheral area of Greater London. H-C10/
14/15 contain the highest frequency of T5-eat and T6-drink classified tweets.

Specific H-C8/14/19/25/28 cover the highest amount of human mobility-related
activities accompanied by ‘leisure time’-related activities. Topics T3-game, T4-shop and
T7-watch mostly occur in geospatial proximity of T8-home, whereas T1-work appears
within clusters that are characterized by a high share of topics T2-train and T5-eat. The
resulting H-SOM clusters are geographically visualized in b).

The comparison between the overall Geo-SOM U-matrices in Figure 7(c) shows that,
for instance, G-T1 and G-T2 have a notable wider geospatial distribution than G-T3
where less BMU clusters exist. G-T7 and G-T8 have similar and close BMU’s appearing in
the outer U-matrix space. G-T1 (work), G-T2 (home) and G-T3 (train) visually match each
other, emphasizing the indication of a latent urban activity structure among different
SOM clusters within the study area.

In order to quantify the statistical relationship between each Geo-SOM and to
investigate how the visually observed cluster structures of Twitter data correspond, all
computed BMU distances for every hexagonal grid cell have been studentized and
correlated. Figure 7(d) illustrates a positive Local Moran’s and Pearson’s correlation
(Freombined > 0.5) between: G-T1 and G-T2; G-T2 and G-T3; G-T5 and G-T6; G-T3 and
G-T8. These correlation values are shown in the upper and lower left corners of the
correlation plot. The following pairs show a strong negative correlation (rcompined < —0.5):
G-T1 and G-T4; G-T2 and G-T5; G-T2 and G-T6; G-T3 and G-T5; G-T3 and G-T6. This
indicates a dissimilar BMU distance distribution, which is visible in the middle part of the
correlation plot. Furthermore, we observe a strong bivariate correlation (r > 0.8) between
the following pairs: G-T1 and G-T2; G-T3 and G-T8. These also show a similar geospatial
distribution pattern as Z(I;) = 1.96. The final hierarchical cluster analysis performed on the
combined Pearson’s and Moran’s correlation matrix reveals three cluster branches in the
dendrogram at about the same vertical distance.



5. Discussion

Summarizing the CP results (Section 4) for each retrieved topic-specific Geo-SOM, one
can discern that the observed clusters have individually varying temporal, semantic and
geospatial characteristics, which can be investigated using our proposed Geo-H-SOM
approach (RQ1). The majority of input tweets share strong similarities across their
temporal and semantic as well as geographical and semantic characteristics. The geo-
graphic space over all tweets is greatly homogenous compared to the other CP input
layer. This supports the need to perform a cluster inference by incorporating all available
geospatial, temporal and semantic attribute features. As one example, tweets classified
as T4-shop and T5-eat related topics show a strong mutual correlation within their
temporal-semantic attributes and form a distinct cluster outlier compared to all other
topics. T1-work and T8-home related topics instead are highly correlating within their
spatiotemporal attributes (but less in their semantic attributes), suggesting that people
tweet about these activities at similar times in similar locations. Thus, these features
would not be detectable as a cluster by solely focusing on the geographic space.
Furthermore, some cluster characteristics might be omitted by leaving out one dimen-
sion. This demonstrates the usefulness of our combined approach for discovering
relationships of human activities within all available input dimensions (RQ1).

The Geo-SOM results and their mutual correlation, e.g., between T1-work and T2-
train, T3-game, T7-watch and T8-home or between T4-shop, T5-eat and T6-drink,
revealed matching spatiotemporal and semantic latent urban activity structures across
London (RQ2). In the final H-SOM, features with similar characteristics appear as merged
clusters within the U-matrix space allowing for the investigation of predominant inter-
ests and activities of people around various public locations.

Due to space constraints, we have only shown exemplary visualizations of our Geo-
SOM approach since further additional visualizations do not lead to more information
content (other results show similar correlations). For reasons of rigorousness and com-
pleteness, the observed clusters have been statistically evaluated by comparing correla-
tion measures of each individual Geo-SOM neuron grid weight. Nonetheless, several
limitations during the conducted analysis need to be addressed.

One clear limitation of the current methodology for extracting urban activity clusters
from social media is the assumption that tweets are written in situ, i.e., the posts’
semantic content concerns the location and time at which the posts are published.
The spatiotemporal and semantic input signal from tweets might also be too sparse
since clusters can only be detected when there is a notable amount of observable
tweets. Therefore only the most significant clusters (T2-train/T3-game) have been
inferred in our research.

Regarding the pre-processing step (Section 3.1) and the following semantic similarity
assessment (Section 3.2), the issue arises how efficiently natural language processing
performs on highly semantically uncertain Twitter data, considering Internet-specific
writing styles including abbreviations, acronyms, slang, etc. The LDA model also requires
an initial parameter inference phase to define the number of topics assuming they have
a probabilistic Dirichlet topic distribution. Tweets classified to T3-game in particular have
shown the highest topic association indicators since the textual information covering
sports event-related topics are more easily distinguishable from other tweets. This is a
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critical aspect as the efficiency of the semantic classification process has an effect on the
subsequent cluster assessment when analyzing other temporal and geospatial attri-
butes. The generative LDA model considers tweets written in different languages since
these posts would be associated into thematically coherent topics across multiple
languages. However, within the Geo-SOM results these topics would form distinctive
clusters, semantically covering the same topic and therefore require an ontology in
order to match and link identical semantic topics written in different languages.

We referred to different kinds of uncertainty during Twitter analysis (Section 1) in
order to state where outcomes might have an undesired effect or bias. The proposed
framework performs robust with uncertain data, since, e.g., LDA considers the high-
dimensionality of textual information, where a single tweet usually expresses a complex
semantic topic and the observed semantic clusters are always modelled as a mixture of
topics and associated words.

The result of the Geo-H-SOM algorithm (Sections 3.3 and 3.4) always depends on the
given input attribute space as it considers the chosen network size with set training
parameters and always needs to pre-determine which factors are relevant. The initial set
radius of the neighborhood function k and the size of the SOM affect the output of the
neural network. The Geo-H-SOM representation of geographical locations and the
corresponding attribute space depends on the k parameter and varies from k = 0, (a
proportional representation of solely geographical locations) via k = 2, (a mediation
between observed local geographic clusters and their attribute space) up to k > 4,
approximating the standard SOM by only preserving topological properties of the input
attributes and thus neglecting the geographic space.

Since the Geo-SOM algorithm assesses similarity among nearby points and their
attribute space, the robustness and performance of the technique to develop mean-
ingful clusters depends highly on the spatiotemporal distribution of georeferenced
tweets and their grade of sparseness.

Features that share similar attribute values will appear as one cluster and are there-
fore suitable to explore latent structures of highly multivariate input dimensions.
However, the results cannot be considered to represent absolute real-world clusters of
human activity patterns.

Furthermore, we compared the resulting Geo-SOM output space and each BMU'’s
weight by computing Pearson’s r and Moran’s /. The detected links, e.g., between
activities related to sports events and major public transportation hubs, have been
inferred by statistically comparing spatial associations between Geo-SOMs and the
correlation of their CPs representing temporal, semantic and geospatial characteristics
of the input dataset. Therefore, the issue arises how comparable multiple SOM results
are, since they only preserve topological relationships and a fraction of the original input
space. During the analysis we used constant parameters with a random initialization for
all Geo-SOM’s. Moreover, since we applied the Geo-SOM algorithm, the BMU search is
limited to a tolerance k = 2, where geographically distant features are less likely to be
part of the same cluster (Bacao et al. 2005). Thus, only geographically close neighboring
neurons and their topological relationships are compared, indicating that the geogra-
phical context of the dataset is predominantly considered. Moreover, within those
geospatially centered BMUs, we consider whether tweets are part of a geographically
clustered or more dispersed set of observations by using the NN analysis results as an
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additional geospatial Geo-SOM input component. Consequently, we further incorporate
the spatial nature of geographic data and our empirical results for the given Twitter
dataset have shown that the topological structures of different resulting Geo-SOMs
correspond to each other since the observed clusters from the attribute space occur
at similar geographic locations (Figure 6(c)). The distance between every input unit and
the mapped training pattern after each iteration (quantization error, topographical error
and geographical error) for every Geo-SOM were constant. Nevertheless, with our
approach we can just detect coincidences of geospatial and non-geospatial input
attributes having similar characteristics, not absolute causal relationships. Thus, further
research in this area needs to be done in order to assess how the derived topologically
close latent intra-urban human activity patterns cluster at similar geographic locations
and to what degree they still reflect the original geographic properties of the input data.

6. Conclusion and future work

In this paper, we applied an explorative data mining approach to extract hidden
relationships and latent structures of information regarding human activities to char-
acterize urban activity structures from unstructured georeferenced Twitter data. As a
result, our combined Geo-H-SOM model considers tweets to be ‘similar’ if the distance to
each other is small in semantic space, in geographic space and in the time domain,
following Resch et al. (2015). Thus, the paper demonstrates that ‘human sensors’ have
the potential to become a powerful source of information towards the inference of
human activities and the study of urban morphology (Crooks et al. 2015).

Answering RQ1 we have shown for our case study that similarities among spatio-
temporal and semantic information reveal latent human activity patterns and are a
proxy indicator for the characterization of underlying urban structures. The derived
SOM results are dominated by the relationship between the identified semantic com-
ponents and their temporal characteristics within geographic space.

As for RQ2, we can state that the extracted spatiotemporal and semantic activity
clusters allow for inferring latent patterns with (dis)similar spatiotemporal characteristics.
The applied unsupervised machine-learning approach enables clustering of high-dimen-
sional uncertain georeferenced Twitter data without requiring any a priori information.
The Geo-SOM algorithm is robust, reflecting the heterogeneous spatiotemporal distribu-
tion of tweets and is able to reduce the high-dimensional uncertain input attributes
down to an easily interpretable data visualization and representation. Even in cases
where the Geo-SOM initialization has been randomized, the output SOM weight vectors
and their topological relationships were constant. We assessed the statistical depen-
dence of obtained U-matrices and CPs by combining the bivariate (Pearson’s r) and
spatial association (Local Moran’s /) of all neuron weights.

The NN analysis is an effective instrument to measure the degree of local spatial
dispersion and allows also a distinction of close spatial clusters within the SOM neuron
weights. The proposed analysis framework is therefore generic, scalable and provides a
better understanding of human spatial interaction and latent urban activity structures by
simultaneously exploring geographic space, time and the semantic attribute space from
tweets. Furthermore we analyzed point observations intensities and varieties in
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geographic- and attribute feature space and investigated their relationship in a com-
bined approach.

It could potentially be used in other regions where limited knowledge about socio-
economic processes within urban structures exists. Furthermore, since the proposed
framework can handle high-dimensional datasets and extract semantic information, it
might also be beneficial for other datasets containing unstructured textual information
with similar characteristics like tweets.

The fundamental concept behind SOMs to learn and recognize patterns on any given
dataset, together with the ability to handle multiple input variables from diverse
information sources (like Twitter) without having explicit knowledge about urban struc-
tures, has a great potential for modeling and predicting certain behavior and relation-
ships for various application domains, including the investigation of user activities and
collective activity structures, the study and forecast of human mobility flows or the
event detection and prediction within the application of disease-, health- and disaster
management.

As one future research direction, exploring urban social dynamics using semantic
information from social media in a more context-sensitive manner with metadata extracted
from Twitter, such as user profiles, followers/following information, should also been
considered. This additional knowledge would enable researchers to detect possible clusters
of social interaction (i.e., people who share common interests at similar times and places)
gaining further insights into urban morphology by exploring human behavior.
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